Plastid DNA insertions in plant nuclear genomes: the sites, abundance and ages, and a predicted promoter analysis
详细信息    查看全文
  • 作者:Hongyu Chen (1)
    Ying Yu (2)
    Xiuling Chen (3)
    Zhenzhu Zhang (1)
    Chao Gong (1)
    Jingfu Li (3)
    Aoxue Wang (1)

    1. Heilongjiang Provincial Key University Laboratory of Agricultural Functional Genes
    ; College of Life Science ; Northeast Agricultural University ; Harbin ; 150030 ; China
    2. Institute of Industrial Crops
    ; Heilongjiang Academy of Agricultural Sciences ; Harbin ; 150086 ; China
    3. College of Horticulture
    ; Northeast Agricultural University ; Harbin ; 150030 ; China
  • 关键词:Plastid DNA ; Genome ; Promoter ; Plant
  • 刊名:Functional & Integrative Genomics
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:15
  • 期:2
  • 页码:131-139
  • 全文大小:890 KB
  • 参考文献:1. Adams, KL, Song, K, Roessler, PG (1999) Intracellular gene transfer in action: dual transcription and multiple silencings of nuclear and mitochondrial cox2 genes in legumes. Proc Natl Acad Sci U S A 96: pp. 13863-13868 CrossRef
    2. Adams, KL, Qiu, YL, Stoutemyer, M (2002) Punctuated evolution of mitochondrial gene content: high and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution. Proc Natl Acad Sci U S A 99: pp. 9905-9912 CrossRef
    Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: pp. 796 CrossRef
    3. Argout, X, Salse, J, Aury, JM (2011) The genome of Theobroma cacao. Nat Genet 43: pp. 101-108 CrossRef
    4. Ayliffe, MA, Scott, NS, Timmis, JN (1998) Analysis of plastid DNA-like sequences within the nuclear genomes of higher plants. Mol Biol Evol 15: pp. 738-745 CrossRef
    5. Baldauf, SL, Palmer, JD (1990) Evolutionary transfer of the chloroplast tufA gene to the nucleus. Nature 344: pp. 262-265 CrossRef
    6. Banks, JA, Nishiyama, T, Hasebe, M (2011) The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332: pp. 960-963 CrossRef
    7. Bausher, MG, Singh, ND, Lee, SB (2006) The complete chloroplast genome sequence of Citrus sinensis (L) Osbeck var鈥橰idge Pineapple鈥? organization and phylogenetic relationships to other angiosperms. BMC Plant Biol 6: pp. 21 CrossRef
    8. Bensasson, D, Zhang, DX, Hartl, DL (2001) Mitochondrial pseudogenes: evolution鈥檚 misplaced witnesses. Trends Ecol Evol 16: pp. 314-321 CrossRef
    9. Bortiri, E, Coleman-Derr, D, Lazo, GR (2008) The complete chloroplast genome sequence of Brachypodium distachyon: sequence comparison and phylogenetic analysis of eight grass plastomes. BMC Res Notes 1: pp. 61 CrossRef
    10. Daniell, H, Wurdack, KJ, Kanagaraj, A (2008) The complete nucleotide sequence of the cassava (Manihot esculenta) chloroplast genome and the evolution of atpF in Malpighiales: RNA editing and multiple losses of a group II intron. Theor Appl Genet 116: pp. 723-737 CrossRef
    11. Gantt, JS, Baldauf, SL, Calie, PJ (1991) Transfer of rpl22 to the nucleus greatly preceded its loss from the chloroplast and involved the gain of an intron. EMBO J 10: pp. 3073
    12. Gargano D, Vezzi A, Scotti N et al (2005) The complete nucleotide sequence of potato ( / Solanum tuberosum cv.Desiree) chloroplast DNA. In: Abstracts Second Solanaceae Genome workshop p. 107
    13. Goodstein, DM, Shu, S, Howson, R (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40: pp. D1178-D1186 CrossRef
    14. Guo, X, Castillo-Ram铆rez, S, Gonz谩lez, V (2007) Rapid evolutionary change of common bean (Phaseolus vulgaris L) plastome, and the genomic diversification of legume chloroplasts. BMC Genomics 8: pp. 228 CrossRef
    15. Guo, X, Ruan, S, Hu, W (2008) Chloroplast DNA insertions into the nuclear genome of rice: the genes, sites and ages of insertion involved. Funct Integr Genom 8: pp. 101-108 CrossRef
    16. Hiratsuka, J, Shimada, H, Whittier, R (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217: pp. 185-194 CrossRef
    17. Huang, CY, Ayliffe, MA, Timmis, JN (2003) Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature 422: pp. 72-76 CrossRef
    18. Huang, CY, Ayliffe, MA, Timmis, JN (2004) Simple and complex nuclear loci created by newly transferred chloroplast DNA in tobacco. Proc Natl Acad Sci U S A 101: pp. 9710-9715 CrossRef
    19. Huang, S, Li, R, Zhang, Z (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41: pp. 1275-1281 CrossRef
    20. Jaillon, O, Aury, JM, Noel, B (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449: pp. 463-467 CrossRef
    21. Jansen, RK, Kaittanis, C, Saski, C (2006) Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. BMC Evol Biol 6: pp. 32 CrossRef
    22. Kahlau, S, Aspinall, S, Gray, JC (2006) Sequence of the tomato chloroplast DNA and evolutionary comparison of solanaceous plastid genomes. J Mol Evol 63: pp. 194-207 CrossRef
    23. Kleine, T, Maier, UG, Leister, D (2009) DNA transfer from organelles to the nucleus: the idiosyncratic genetics of endosymbiosis. Annu Rev Plant Biol 60: pp. 115-138 CrossRef
    24. Maier, RM, Neckermann, K, Igloi, GL (1995) Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 251: pp. 614-628 CrossRef
    25. Martin, W (2003) Gene transfer from organelles to the nucleus: frequent and in big chunks. Proc Natl Acad Sci U S A 100: pp. 8612-8614 CrossRef
    26. Martin, W, Herrmann, RG (1998) Gene transfer from organelles to the nucleus: how much, what happens, and why?. Plant Physiol 118: pp. 9-17 CrossRef
    27. Martin, W, Stoebe, B, Goremykin, V (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393: pp. 162-165 CrossRef
    28. Martin, W, Rujan, T, Richly, E (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci U S A 99: pp. 12246-12251 CrossRef
    29. Matsuo, M, Ito, Y, Yamauchi, R (2005) The rice nuclear genome continuously integrates, shuffles, and eliminates the chloroplast genome to cause chloroplast鈥搉uclear DNA flux. Plant Cell 17: pp. 665-675 CrossRef
    30. Maul, JE, Lilly, JW, Cui, L (2002) The Chlamydomonas reinhardtii Plastid Chromosome Islands of Genes in a Sea of Repeats. Plant Cell 14: pp. 2659-2679 CrossRef
    31. Millen, RS, Olmstead, RG, Adams, KL (2001) Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell 13: pp. 645-658 CrossRef
    32. Ming, R, Hou, S, Feng, Y (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452: pp. 991-996 CrossRef
    33. Nishiyama, T, Fujita, T, Shin, T (2003) Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land plant evolution. Proc Natl Acad Sci U S A 100: pp. 8007-8012 CrossRef
    34. Noutsos, C, Richly, E, Leister, D (2005) Generation and evolutionary fate of insertions of organelle DNA in the nuclear genomes of flowering plants. Genome Res 15: pp. 616-628 CrossRef
    35. Paiva, JAP, Prat, E, Vautrin, S (2011) Advancing Eucalyptus genomics: identification and sequencing of lignin biosynthesis genes from deep-coverage BAC libraries. BMC Genomics 12: pp. 137 CrossRef
    36. Paterson, AH, Bowers, JE, Bruggmann, R (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457: pp. 551-556 CrossRef
    37. Pl膮der, W, Yukawa, Y, Sugiura, M (2007) The complete structure of the cucumber (Cucumis sativus L.) chloroplast genome: its composition and comparative analysis. Cell Mol Biol Lett 12: pp. 584-594
    Genome sequence and analysis of the tuber crop potato. Nature 475: pp. 189-195 CrossRef
    38. Prochnik, S, Marri, PR, Desany, B (2012) The cassava genome: current progress, future directions. Trop Plant Biol 5: pp. 88-94 CrossRef
    The map-based sequence of the rice genome. Nature 436: pp. 793-800 CrossRef
    39. Rujan, T, Martin, W (2001) How many genes in Arabidopsis come from cyanobacteria? An estimate from 386 protein phylogenies. Trends Genet 17: pp. 113-120 CrossRef
    40. Saski, C, Lee, SB, Daniell, H (2005) Complete chloroplast genome sequence of Glycine max and comparative analyses with other legume genomes. Plant Mol Biol 59: pp. 309-322 CrossRef
    41. Saski, C, Lee, SB, Fjellheim, S (2007) Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. Theor Appl Genet 115: pp. 571-590 CrossRef
    42. Sato, S, Nakamura, Y, Kaneko, T (1999) Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res 6: pp. 283-290 CrossRef
    43. Schmutz, J, Cannon, SB, Schlueter, J (2010) Genome sequence of the palaeopolyploid soybean. Nature 463: pp. 178-183 CrossRef
    44. Schnable, PS, Ware, D, Fulton, RS (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326: pp. 1112-1115 CrossRef
    45. Shahmuradov, IA, Akbarova, YY, Solovyev, VV (2003) Abundance of plastid DNA insertions in nuclear genomes of rice and Arabidopsis. Plant Mol Biol 52: pp. 923-934 CrossRef
    46. Sheppard, AE, Timmis, JN (2009) Instability of plastid DNA in the nuclear genome. PLoS Genet 5: pp. e1000323 CrossRef
    47. Shrager, J, Hauser, C, Chang, CW (2003) Chlamydomonas reinhardtii genome project. A guide to the generation and use of the cDNA information. Plant Physiol 131: pp. 401-408 CrossRef
    48. Shulaev, V, Sargent, DJ, Crowhurst, RN (2010) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43: pp. 109-116 CrossRef
    49. Smith, DR (2009) Unparalleled GC content in the plastid DNA of Selaginella. Plant Mol Biol 71: pp. 627-639 CrossRef
    50. Smith, DR, Crosby, K, Lee, RW (2011) Plastids and gene transfer: correlation between nuclear plastid DNA abundance and plastid number supports the limited transfer window hypothesis. Genome Biol Evol 3: pp. 365 CrossRef
    51. Stegemann, S, Hartmann, S, Ruf, S (2003) High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci U S A 100: pp. 8828-8833 CrossRef
    52. Sugiura, C, Kobayashi, Y, Aoki, S (2003) Complete chloroplast DNA sequence of the moss Physcomitrella patens: evidence for the loss and relocation of rpoA from the chloroplast to the nucleus. Nucleic Acids Res 31: pp. 5324-5331 CrossRef
    53. Timmis, JN, Ayliffe, MA, Huang, CY (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5: pp. 123-135 CrossRef
    The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485: pp. 635-641 CrossRef
    54. Tuskan, GA, Difazio, S, Jansson, S (2006) The genome of black cottonwood, Populus trichocarpa (Torr & Gray). Science 313: pp. 1596-1604 CrossRef
    55. Vogel, JP, Garvin, DF, Mockler, TC (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463: pp. 763-768 CrossRef
    56. Woischnik, M, Moraes, CT (2002) Pattern of organization of human mitochondrial pseudogenes in the nuclear genome. Genome Res 12: pp. 885-893 CrossRef
    57. Xu, Q, Chen, LL, Ruan, X (2013) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45: pp. 59-66 CrossRef
    58. Yoshida, T, Furihata, HY, Kawabe, A (2013) Patterns of genomic integration of nuclear chloroplast DNA fragments in plant species. DNA Res 21: pp. 127-140 CrossRef
    59. Young, HA, Lanzatella, CL, Sarath, G (2011) Chloroplast genome variation in upland and lowland switchgrass. PLoS One 6: pp. e23980 CrossRef
    60. Young, ND, Debell茅, F, Oldroyd, GED (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480: pp. 520-524 CrossRef
    61. Yuan, Q, Hill, J, Hsiao, J (2002) Genome sequencing of a 239-kb region of rice chromosome 10聽L reveals a high frequency of gene duplication and a large chloroplast DNA insertion. Mol Genet Genomics 267: pp. 713-720 CrossRef
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Plant Genetics and Genomics
    Microbial Genetics and Genomics
    Biochemistry
    Bioinformatics
    Animal Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1438-7948
文摘
The transfer of plastid DNA sequences into plant nuclear genomes plays an important role in the genomic evolution of plants. The abundance of nuclear-localized plastid DNA (nupDNA) correlates positively with nuclear genome size, but the genetic content of nupDNA remains unknown. In this mini review, we analyzed the number of nuclear-localized plastid gene fragments in known plant genomic data. Our analysis suggests that nupDNAs are abundant in plant nuclear genomes and can include multiple complete copies of protein-coding plastid genes. Mutated nuclear copies of plastid genes contained synonymous and nonsynonymous substitutions. We estimated the age of the nupDNAs based on the time when each integration occurred, which was calculated by comparing the nucleotide substitution rates of the nupDNAs and their respective plastid genes. These data suggest that there are two distinct age distribution patterns for nupDNAs in plants, and Oryza sativa and Zea mays were found to contain a very high proportion of young nupDNAs. Expressed sequence tags and predicted promoters of nupDNAs were identified, revealing that certain nuclear-localized plastid genes may be functional and that some have undergone positive natural selection pressure.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700