Quantum differential systems and construction of rational structures
详细信息    查看全文
  • 作者:Antoine Douai
  • 关键词:32S40 ; 14J33 ; 34M35
  • 刊名:manuscripta mathematica
  • 出版年:2014
  • 出版时间:November 2014
  • 年:2014
  • 卷:145
  • 期:3-4
  • 页码:285-317
  • 全文大小:385 KB
  • 参考文献:1. Arnold, V.I., Varchenko, A.N., Goussein-Zadé, S.: Singularités des applications différentiables 2. Editions Mir, Moscou, 1986.
    2. Bolibrukh A.A.: On isomonodromic confluences of Fuchsian singularities. Proc. Steklov Inst. Math. 221(2), 117-32 (1998)
    3. Chen, W., Ruan, Y.: Orbifold Gromov-Witten theory. In: Orbifolds in Mathematics and Physics (Madison WI 2001), vol. (310) of Contemp. Math. pp. 25-5. AMS, Providence, RI (2002)
    4. Chen W., Ruan Y.: A new cohomology theory of orbifold. Commun. Math. Phys. 248(1), 1-1 (2004) CrossRef
    5. Cox, D., Katz, S.: Mirror Symmetry and Algebraic Geometry. Mathematical Surveys and Monographs, 68, American Mathematical Society, Providence, RI (1999)
    6. Douai, A.: Construction de variétés de Frobenius via les polyn?mes de Laurent: une autre approche. In: Barlet, D. (ed.) Singularités, Institut Elie Cartan Nancy, 18, 2005, pp. 105-23. math.AG/0510437
    7. Douai A.: A canonical Frobenius structure. Math. Zeitschrift 261(3), 625-48 (2009) CrossRef
    8. Douai, A.: Quantum differential systems and some applications to mirror symmetry. Available at arXiv:1203.5920
    9. Douai A., Mann E.: The small quantum cohomology of a weighted projective space, a mirror D-module and their classical limits. Geom. Dedicata 164(1), 187-26 (2013) CrossRef
    10. Douai A., Sabbah C.: Gauss-Manin systems, Brieskorn lattices and Frobenius structures I. Ann. Inst. Fourier 53(4), 1055-116 (2003) CrossRef
    11. Douai, A., Sabbah, C.: Gauss-Manin systems, Brieskorn lattices and Frobenius structures II. In: Hertling, C., Marcolli, M. (eds.) Frobenius Manifolds, Aspects of Mathematics E 36
    12. Dubrovin : Integrable systems in topological field theory. Nucl. Phys. B 379, 627-89 (1992) CrossRef
    13. Dubrovin, B.: Geometry of 2 / D topological field theories. In: Francaviglia, M., Greco, S. (eds.) Integrable Systems and Quantum Groups, Lect. Notes Math., Springer, 1620, 1996, pp. 120-348.
    14. Dubrovin, B.: Painlevé transcendents in two dimensional topological field theory, In: Painlevé Property, One Century Later, Cargèse (1996)
    15. Givental A.B: Equivariant Gromov-Witten invariants. Int. Math. Res. Not. 13, 613-63 (1996) CrossRef
    16. Hertling, C., Manin, Y.: Meromorphic connections and Frobenius manifolds. In: Hertling, C., Marcolli, M., (eds.) Frobenius Manifolds, Aspects of Mathematics E 36
    17. Hertling C.: / tt * geometry, Frobenius manifolds, their connections, and the construction for singularities. J. Reine Angew. Math. 555, 77-61 (2003)
    18. Hertling, C.: Formes bilinéaires et hermitiennes pour les singularités: un aper?u. In: Barlet, D. (ed.) Singularités, Institut Elie Cartan Nancy, 18, 2005, pp. 1-7
    19. Hori, K., Vafa, C.: Mirror symmetry. arXiv:hep-th/0002222 .
    20. Iritani H.: An integral structure in quantum cohomology and mirror symmetry for toric orbifolds. Adv. Math. 222, 1016-079 (2009) CrossRef
    21. Katzarkov L., Kontsevich M., Pantev T.: Hodge theoretic aspects of mirror symmetry. Proc. Symp. Pure Math. Am. Math. Soc. 78, 87-74 (2008) CrossRef
    22. Kouchnirenko A.G.: Polyèdres de Newton et nombres de Milnor. Invent. Math. 32, 1-1 (1976) CrossRef
    23. Malgrange B.: Déformations de systèmes différentiels et microdifférentiels. Sémin. E.N.S Math. et Phys. Prog. Math. 37, 351-79 (1983)
    24. Malgrange B.: Deformations of differential systems, II. J. Ramanujan Math. Soc. 1, 3-5 (1986)
    25. Manin Y.: Frobenius Manifolds, Quantum Cohomology and Moduli Spaces. American Mathematical Society Colloquium publications. American Mathematical Society, Providence, RI (1999)
    26. Pham F.: Vanishing homologies and the / n variable saddlepoint method. Proc. Symp. Pure Math. 40, 319-33 (1983) CrossRef
    27. Pham, F.: La descente des cols par les onglets de Lefschetz avec vues sur Gauss-Manin. In: “Systèmes différentiels et singularités- Astérisque, Soc. Math. France, 130 (1985)
    28. Przyjalkowski V.: Hori-Vafa mirror models for complete intersections in weighted projective spaces and weak Landau–Ginzburg models. Cent. Eur. J. Math. 9, 972-77 (2011) CrossRef
    29. Reichelt, T.: A construction of Frobenius manifolds with logarithmic poles and applications. Commun. Math. Phys. 287(3), 1145-187 (2009)
    30. Reichelt, T., Sevenheck, C. : Logarithmic Frobenius manifolds, hypergeometric systems and quantum / D-modules. Available at arXiv:1010.2118v1. To appear in Journal of Algebraic Geometry
    31. Sabbah, C.: Déformations isomonodromiques et variétés de Frobenius. Savoirs Actuels, CNRS Editions, Paris (2002)
    32. Sabbah, C.: Monodromy at infinity and Fourier transform. RIMS, Kyoto Univ., 33, pp. 643-85 (1997)
    33. Sabbah : Hypergeometric periods for a tame polynomial. C.R. Acad. Sci. Paris, Sér.I Math. 328, 603-08 (1999) CrossRef
    34. Sabbah C.: Fourier-Laplace transform of a variation of polarized complex Hodge structure. J. Reine Angew. Math. 621, 123-58 (2008)
    35. Saito M.: On the structure of Brieskorn lattice. Ann. Inst. Fourier 39(1), 27-2 (1989) CrossRef
    36. Saito K.: Period mapping associated to a primitive form. Publ. RIMS Kyoto Univ. 19, 1231-264 (1983) CrossRef
    37. Teyssier, J-B.: Introduction aux structures de Hodge non-commutatives. Mémoire de M2 (2009)
  • 作者单位:Antoine Douai (1)

    1. Laboratoire J.A Dieudonné, UMR CNRS 7351, Université de Nice, Parc Valrose, 06108, Nice Cedex 2, France
  • ISSN:1432-1785
文摘
We consider mirror symmetry (A-side vs B-side, namely singularity side) in the framework of quantum differential systems. We focuse on the logarithmic non-resonant case, which describes the geometric situation and we show that such systems provide a good framework in order to generalize the construction of the rational structure given by Katzarkov, Kontsevich and Pantev for the complex projective space. As an application, we give a closed formula for the rational structure defined by the Lefschetz thimbles on the flat sections of the Gauss-Manin connection associated with the Landau–Ginzburg models of weighted projective spaces (a class of Laurent polynomials). As a by-product, using a mirror theorem, we get a rational structure on the orbifold cohomology of weighted projective spaces. The formula on the B-side is more complicated than the one on the A-side (the latter agrees with one of Iritani’s results), depending on numerous combinatorial data which are rearranged after the mirror transformation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700