Effects of saltwater intrusion on pinewood vegetation using satellite ASTER data: the case study of Ravenna (Italy)
详细信息    查看全文
  • 作者:M. Barbarella (1)
    M. De Giglio (1)
    N. Greggio (2)

    1. Department of Civil
    ; Chemical ; Environmental and Materials Engineering鈥擠ICAM ; University of Bologna ; Viale Risorgimento 2 ; 40136 ; Bologna ; Italy
    2. Interdepartmental Centre for Environmental Science Research (CIRSA)
    ; I.G.R.G. Lab. ; University of Bologna ; Via S. Alberto 163 ; 48123 ; Ravenna ; Italy
  • 关键词:NDVI ; ASTER ; Saltwater intrusion in coastal aquifer ; Groundwater ; Pinewood ; Statistical evaluation
  • 刊名:Environmental Monitoring and Assessment
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:187
  • 期:4
  • 全文大小:3,514 KB
  • 参考文献:1. Aguilar, C, Zinnert, JC, Polo, MR, Young, DR (2012) NDVI as an indicator for changes in water availability to woody vegetation. Ecological Indicators 23: pp. 290-300 CrossRef
    2. Akkala, A, Devabhaktuni, V, Kumar, A (2010) Interpolation techniques and associated software for environmental data. Environmental Progress & Sustainable Energy 29: pp. 134-141 CrossRef
    3. Alaoui-Sosse, B., Sehmer, L., Barnola, P., & Dizengremel, P. (1998). Effect of NaCl salinity on growth and mineral partitioning in Quercus robur L., a rhythmically growing species. / Trees, 12(7), 424鈥?30.
    4. Allakhverdiev, SI, Sakamoto, A, Nishiyama, Y, Inaba, M, Murata, N (2000) Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiology 123: pp. 1047-1056 CrossRef
    5. Amorosi, A, Colalongo, ML, Pasini, G, Preti, D (1999) Sedimentary response to Late Quaternary sea-level changes in the Romagna coastal plain (northern Italy). Sedimentology 46: pp. 99-121 CrossRef
    6. Antolini, G., Marletto, V., Tomei, F., Pavan, V., & Tomozeiu, R. (2008). Atlante Idroclimatico Dell鈥橢milia鈥怰omagna 1961鈥?008. http://www.arpa.emr.it/sim/?clima, Accessed 27 July 2014.
    7. Antonellini, M, Mollema, P (2010) Impact of groundwater salinity on vegetation species richness in the coastal pine forests and wetlands of Ravenna, Italy. Ecological Engineering 236: pp. 1201-1211 CrossRef
    8. Asner, GP (1998) Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing of Environment 64: pp. 234-253 CrossRef
    9. Barton, CWM (2012) Advances in remote sensing of plant stress. Plant and Soil 354: pp. 41-44 CrossRef
    10. Buscaroli, A, Zannoni, D (2010) Influence of ground water on soil salinity in the San Vitale Pinewood (Ravenna-Italy). Agrochimica 54: pp. 303-320
    11. Church, J.A., Clark, P.U., Cazenave, A., Gregory, J.M., Jevrejeva, S., Levermann, A., et al. (2013). Sea Level Change. In Stocker, T. F., Qin, D., Plattner, G. -K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M. (Eds.), / Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (p. 1137鈥?216). Cambridge: Cambridge University Press.
    12. Davenport, ML, Nicholson, SE (1993) On the relation between rainfall and the normalized difference vegetation index for diverse vegetation types in East Africa. International Journal of Remote Sensing 14: pp. 2369-2389 CrossRef
    13. DeLaune, RD, Pezeshki, SR, Patrick, WA (1987) Response of coastal plants to increase in submergence and salinity. Journal of Coastal Research 3: pp. 535-546
    14. Diani, L., & Ferrari, C. (2007). La vegetazione della Pineta di San Vitale e il pattern spaziale di Pinus Pinea. In: / Monitoraggio e salvaguardia della Pineta di San Vitale e Classe. Rapporti Tecnici, Comune di Ravenna 2007.
    15. Eidenshink, JC (1992) The 1990 conterminous U.S. AVHRR data set. Phogrammetric Engineering and Remote Sensing 58: pp. 809-8013
    Atmospheric correction module: QUAC and FLAASH user鈥檚 guide, ENVI Version 5.0. ITT Visual Information Solutions, Boulder
    16. Foody, GM, Cutler, ME, McMorrow, J, Pelz, D, Tangki, H, Boyd, DS, Douglas, I (2001) Mapping the biomass of Bornean tropical rain forest from remote sensed data. Global Ecology and Biogeography 10: pp. 379-387 CrossRef
    17. Gamon, JA, Field, CB, Goulden, ML, Griffin, KL, Hartley, AE, Joel, G, Pe帽uelas, J, Valentini, R (1995) Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecological Applications 5: pp. 28-41 CrossRef
    18. Giambastiani, BMS, Antonellini, M, OudeEssink, GHP, Stuurman, RJ (2007) Saltwater intrusion in the unconfined coastal aquifer of Ravenna (Italy): a numerical model. Journal of Hydrology 340: pp. 94-104 CrossRef
    19. Giorgi, F, Lionello, P (2008) Climate change projections for the Mediterranean region. Global and Planetary Change 63: pp. 90-104 CrossRef
    20. Goto, K, Goto, T, Nmor, JC, Minematsu, K, Gotoh, K (2015) Evaluating salinity damage to crops through satellite data analysis: application to typhoon affected areas of southern Japan. Natural Hazards 75: pp. 2815-2828 CrossRef
    21. Greggio, N, Antonellini, M, Mollema, P Irrigation management in coastal zones to prevent soil and groundwater salinization. In: Abrol, V, Sharma, P eds. (2012) Resource management for sustainable agriculture. Intech, Rijeka, pp. 21-48
    22. Griffith, B., Douglas, D. C., Walsh, N. E., Young, D. D., McCabe, T. R., Russell, D. E., & Whitten, K. R. (2002). Section 3: the porcupine caribou herd. US Geological Survey, Biological Resources Division, Biological Science Report USGS/BRD/BSR-2002-0001, 8鈥?7.
    23. Gutierrez-Rodriguez, M, Escalante-Estrada, JA, Rodriguez-Gonzalez, MT (2005) Canopy reflectance, stomatal conductance, and yield of Phaseolus vulgaris L. and Phaseolus coccinues L. under saline field conditions. International Journal of Agriculture and Biology 7: pp. 491-494
    24. Hern谩ndez, EI, Melendez-Pastor, I, Navarro-Pedre帽o, J, G贸mez, I (2014) Spectral indices for the detection of salinity effects in melon plants. Scientia Agricola 71: pp. 324-330 CrossRef
    25. Holm, AL, Cridland, SW, Roderick, CK (2003) The use of time-integrated NOAA NDVI data and rainfall to assess landscape degradation in the arid shrubland of Western Australia. Remote Sensing of Environment 85: pp. 145-158 CrossRef
    26. Kerr, JT, Ostrovsky, M (2003) From space to species: ecological applications for remote sensing. Trends in Ecology & Evolution 18: pp. 299-305 CrossRef
    27. Kotuby-Amacher, J., Koenig, R., & Kitchen, B. (1997). Salinity and plant tolerance. Utah State University, USA. http://forestry.usu.edu/files/uploads/AGSO03.pdf. Accessed 02 February 2014
    28. Laghi, M., Mollema, P., & Antonellini, M. (2010). The influence of river bottom topography on saltwater encroachment along the Lamone River (Ravenna, Italy), and implications for the salinization of the adjacent coastal aquifer. World environmental and water resources congress 2010: 1124 Challenges of change. 2010 ASCE, pp 1124鈥?135.
    29. Lazzari, G, Merloni, N, Saiani, D (2009) Flora, Riserve Naturali dello Stato nell鈥檃rea costiera di Ravenna Parco Delta del Po - Emilia Romagna. Parco Delta del Po. Quaderni dell鈥橧bis, n.3. Tipografia Moderna, Ravenna
    30. Maire, G, Francois, C, Dufrene, E (2004) Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sensing of Environment 89: pp. 1-28 CrossRef
    31. Liu, B. X., Wang, Z. G., Liang, H. Y., & Yang, M. S. (2012). Effects of salt stress on physiological characters and salt-tolerance of Ulmus pumila in different habitats. / The Journal of Applied Ecology, 23(6), 1481.
    32. Maas, EV (1984) Salt tolerance of plants. Handbook of plant science in agriculture. CRC Press, Boca Raton, pp. 57-75
    33. Marconi, V, Antonellini, M, Balugani, E, Dinelli, E (2011) Hydrogeochemical characterization of small coastal wetlands and forests in the Southern Po plain (Northern Italy). Ecohydrology 4: pp. 597-607 CrossRef
    34. Mata-Gonz谩lez, R, McLendon, T, Martin, DW, Trlica, MJ, Pearce, RA (2012) Vegetation as affected by groundwater depth and microtopography in a shallow aquifer area of the Great Basin. Ecohydrology 5: pp. 54-63 CrossRef
    35. Metternicht, GI, Zinck, JA (2003) Remote sensing of soil salinity: potentials and constraints. Remote Sensing of Environment 85: pp. 1-20 CrossRef
    36. Mirck, J, Volk, TA (2010) Response of three shrub willow varieties (Salix spp.) to storm water treatments with different concentrations of salts. Bioresource Technology 101: pp. 3484-3492 CrossRef
    37. Mollema, PN, Antonellini, M, Dinelli, E, Gabbianelli, G, Greggio, N, Stuyfzand, PJ (2013) Hydrochemical and physical processes influencing salinization and freshening in Mediterranean low-lying coastal environments. Applied Geochemistry 34: pp. 207-211 CrossRef
    38. Myneni, RB, Forrest, GH, Sellers, PJ, Marshak, AL (1995) The interpretation of spectral vegetation indexes. IEEE Transactions on Geoscience and Remote Sensing 33: pp. 481-486 CrossRef
    39. National Institute of Standards and Technology (NIST), (2003). NIST/SEMATECH e-handbook of statistical methods. http://www.itl.nist.gov/div898/handbook/. Accessed 28 May 2013.
    40. Naumann, JC, Young, DR, Anderson, JE (2009) Spatial variations in salinity stress across a coastal landscape using vegetation indices derived from hyperspectral imagery. Plant Ecology 202: pp. 285-297 CrossRef
    41. Padula, M (1968) Ricerche sulle condizioni ecologiche dei boschi di S. Vitale e di Classe (Ravenna). Annali dell鈥橝ccademia Italiana delle Scienze Forestali 17: pp. 173-244
    42. Parida, AK, Das, AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety 60: pp. 324-349 CrossRef
    43. Pe帽uelas, J (1998) Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends in Plant Science 3: pp. 151-156 CrossRef
    44. Pettorelli, N, Vik, JO, Mysterud, A, Gaillard, JM, Tucker, CJ, Stenseth, NC (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution 20: pp. 503-510 CrossRef
    45. Piccoli, F, Gerdol, R, Ferrari, C (1991) Vegetation map of S. Vitale pinewood (Northern Adriatic coast, Italy). Phytocoenosis 3: pp. 337-342
    46. Pirola, A (1974) La vegetazione della Pineta di San Vitale. Influenza di insediamenti industriali sul circostante ambiente naturale. Studio sulla Pineta di San Vitale di Ravenna (pp 76鈥?8). Ed. Compositori, Bologna
    47. Reed, BC, Brown, JF, Vander Zee, D, Loveland, TR, Merchant, JW, Ohlen, DO (1994) Measuring phenological variability from satellite imagery. Journal of Vegetation Science 5: pp. 703-714 CrossRef
    48. Regione Emilia Romagna - Servizio Cartografico e Geologico (1999). Carta della Vegetazione del Parco Regionale del Delta del Po - Stazione 鈥淧ineta di San Vitale e Pialasse di Ravenna鈥? http://geoportale.regione.emilia-romagna.it. Accessed 16 April 2013.
    49. Rodgers, JC, Murrah, AW, Cooke, WH (2009) The impact of Hurricane Katrina on the coastal vegetation of the Weeks Bay Reserve, Alabama from NDVI data. Estuaries and Coasts 32: pp. 496-507 CrossRef
    50. Sehmer, L, Alaoui-Sosse, B, Dizengremel, P (1995) Effect of salt stress on growth and on the detoxifying pathway of pedunculate oak seedlings (Quercus robur L.). Journal of Plant Physiology 147: pp. 144-151 CrossRef
    51. Steyer, G. D. (2008). / Landscape analysis of vegetation change in coastal Louisiana following hurricanes Katrina and Rita (Doctoral dissertation, University of Southwestern Louisiana).
    52. Teobaldelli, M., Gandolfo, G. P., Mencuccini, M., Piussi, P., & Cherubini, P. (2005). Analysis of the effects of water salinity and coastal erosion on function and growth of pine forests in the Maremma Regional Park. Medcore Project International Conference, Florence, Italy, 10鈥?4 November 2005. Abstract Volume: 85.
    53. Tilley, DR, Ahmed, M, Son, JH, Badrinarayanan, H (2007) Hyperspectral reflectance response of freshwater macrophytes to salinity in a brackish subtropical marsh. Journal of Environmental Quality 36: pp. 780-789 CrossRef
    54. Tucker, CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8: pp. 127-150 CrossRef
    55. Turner, W, Spector, S, Gardiner, N, Fladeland, M, Sterling, E, Steininger, M (2003) Remote sensing for biodiversity science and conservation. Trends in Ecology & Evolution 18: pp. 306-314 CrossRef
    56. UNESCO (1983). Algorithms for computation of fundamental properties of seawater. UNESCO technical papers in marine science 44, UNESCO/SCOR/ICES/IAPSO Joint Panel on Oceanographic Tables and Standards and SCOR Working Group 51.
    57. Vourlitis, GL, Verfaillie, J, Oechel, WC, Hope, A, Stow, D, Engstrom, R (2003) Spatial variation in regional CO2 exchange for the Kuparuk River Basin, Alaska over the summer growing season. Global Change Biology 9: pp. 930-941 CrossRef
    58. Wang, J, Rich, PM, Price, KP (2003) Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. International Journal of Remote Sensing 24: pp. 2345-2364 CrossRef
    59. Weier, J., & Herring, D. (1999). Measuring vegetation (NDVI & RVI).<http://Earthobservatory.nasa.gov>. Accessed 11 February 2009.
    60. Wiegand, CL, Rhoades, JD, Escobar, DE, Everitt, JH (1994) Photographic and videographic observations for determining and mapping the response of cotton to soil-salinity. Remote Sensing of Environment 49: pp. 212-223 CrossRef
    61. Wilkie, DS, Finn, JT (1996) Remote sensing imagery for natural resources monitoring: a guide for first-time users. Columbia University Press, New York
    62. Yuan, J., & Niu, Z. (2008). Evaluation of atmospheric correction using FLAASH. In: / International workshop on earth observation and remote sensing applications, pp. 1鈥?.
    63. Zhang, T, Zeng, SL, Gao, Y, Ouyang, ZT, Li, B, Fang, CM, Zhao, B (2011) Using hyperspectral vegetation indices as a proxy to monitor soil salinity. Ecological Indicators 11: pp. 1552-1562 CrossRef
    64. Zinnert, JC, Nelson, JD, Hoffman, AM (2012) Effects of salinity on physiological responses and the photochemical reflectance index in two co-occurring coastal shrubs. Plant and Soil 354: pp. 45-55 CrossRef
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
    Ecology
    Atmospheric Protection, Air Quality Control and Air Pollution
    Environmental Management
  • 出版者:Springer Netherlands
  • ISSN:1573-2959
文摘
The San Vitale pinewood (Ravenna, Italy) is part of the remaining wooded areas within the southeastern Po Valley. Several studies demonstrated a widespread saltwater intrusion in the phreatic aquifer caused by natural and human factors in this area as the whole complex coastal system. Groundwater salinization affects soils and vegetation, which takes up water from the shallow aquifer. Changes in groundwater salinity induce variations of the leaf properties and vegetation cover, recognizable by satellite sensors as a response to different spectral bands. A procedure to identify stressed areas from satellite remote sensing data, reducing the expensive and time-consuming ground monitoring campaign, was developed. Multispectral Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data, acquired between May 2005 and August 2005, were used to calculate Normalized Difference Vegetation Index (NDVI). Within the same vegetation type (thermophilic deciduous forest), the areas with the higher vegetation index were taken as reference to identify the most stressed areas using a statistical approach. To confirm the findings, a comparison was conducted using contemporary groundwater salinity data. The results were coherent in the areas with highest and lowest average NDVI values. Instead, to better understand the behavior of the intermediate areas, other parameters influencing vegetation (meteorological data, water table depth, and tree density) were added for the interpretation of the results.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700