Genome comparison provides molecular insights into the phylogeny of the reassigned new genus Lysinibacillus
详细信息    查看全文
  • 作者:Kai Xu (1) (2)
    Zhiming Yuan (1)
    Simon Rayner (3)
    Xiaomin Hu (1)

    1. Key Laboratory of Agricultural and Environmental Microbiology
    ; Wuhan Institute of Virology ; Chinese Academy of Sciences ; Wuhan ; 430071 ; China
    2. University of the Chinese Academy of Sciences
    ; Beijing ; 100039 ; China
    3. State Key Laboratory of Virology
    ; Wuhan Institute of Virology ; Chinese Academy of Sciences ; Wuhan ; 430071 ; China
  • 关键词:Lysinibacillus ; Bacillus ; Lysinibacillus sphaericus ; Genome ; Phylogeny
  • 刊名:BMC Genomics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 全文大小:2,769 KB
  • 参考文献:1. Cano, RJ, Borucki, MK (1995) Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. Science 268: pp. 1060-4 CrossRef
    2. Han, B, Liu, HZ, Hu, XM, Cai, YJ, Zheng, DS, Yuan, ZM (2007) Molecular characterization of a glucokinase with broad hexose specificity from Bacillus sphaericus strain C3-41. Appl Environ Microbiol 73: pp. 3581-6 CrossRef
    3. Berry, C (2012) The bacterium, Lysinibacillus sphaericus, as an insect pathogen. J Invertebr Pathol 109: pp. 1-10 CrossRef
    4. Wirth, MC, Yang, Y, Walton, WE, Federici, BA, Berry, C (2007) Mtx toxins synergize Bacillus sphaericus and Cry11Aa against susceptible and insecticide-resistant Culex quinquefasciatus larvae. Appl Environ Microbiol 73: pp. 6066-71 CrossRef
    5. Jones, GW, Nielsen-Leroux, C, Yang, Y, Yuan, Z, Dumas, VF, Monnerat, RG (2007) A new Cry toxin with a unique two-component dependency from Bacillus sphaericus. FASEB J 21: pp. 4112-20 CrossRef
    6. Zhang, Y, Liu, E, Cai, C, Chen, Z (1987) Isolation of two highly toxic Bacillus sphaericus strains. Insecticidal Microorg 1: pp. 98-9
    7. Debarjac, H, Largetthiery, I, Dumanoir, VC, Ripouteau, H (1985) Serological classification of Bacillus sphaericusstrains on the basis of toxicity to mosquito larvae. Appl Environ Microbiol 21: pp. 85-90
    8. Krych, VK, Johnson, JL, Yousten, AA (1980) Deoxyribonucleic-acid homologies among strains of Bacillus sphaericus. Int J Syst Bacteriol 30: pp. 476-84 CrossRef
    9. Ge, Y, Hu, XM, Zheng, DS, Wu, YM, Yuan, ZM (2011) Allelic diversity and population structure of Bacillus sphaericus as revealed by multilocus sequence typing. Appl Environ Microbiol 77: pp. 5553-6 CrossRef
    10. Ahmed, I, Yokota, A, Yamazoe, A, Fujiwara, T (2007) Proposal of Lysinibacillus boronitolerans gen. nov sp nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int J Syst Evol Microbiol 57: pp. 1117-25 CrossRef
    11. Hu, X, Fan, W, Han, B, Liu, H, Zheng, D, Li, Q (2008) Complete genome sequence of the mosquitocidal bacterium Bacillus sphaericus C3-41 and comparison with those of closely related Bacillus species. J Bacteriol 190: pp. 2892-902 CrossRef
    12. Jeong, H, Jeong, DE, Sim, YM, Park, SH, Choi, SK (2013) Genome sequence of Lysinibacillus sphaericus strain KCTC 3346T. Genome Announc 1: pp. e00625-13
    13. Pena-Montenegro, TD, Dussan, J (2013) Genome sequence and description of the heavy metal tolerant bacterium Lysinibacillus sphaericus strain OT4b.31. Stand Genomic Sci 9: pp. 42-56 CrossRef
    14. Agren, J, Sundstrom, A, Hafstrom, T, Segerman, B (2012) Gegenees: fragmented alignment of multiple genomes for determining phylogenomic distances and genetic signatures unique for specified target groups. PLoS One 7: pp. e39107 CrossRef
    15. Nakamura, LK (2000) Phylogeny of Bacillus sphaericus-like organisms. Int J Syst Evol Microbiol 50: pp. 1715-22
    16. Tettelin, H, Riley, D, Cattuto, C, Medini, D (2008) Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 11: pp. 472-7 CrossRef
    17. Zhao, Y, Jia, X, Yang, J, Ling, Y, Zhang, Z, Yu, J, Wu, J, Xiao, J (2014) PanGP: A tool for quickly analyzing bacterial pan-genome profile. Bioinformatics 30: pp. 1297-9 CrossRef
    18. Cui, YB, Zhou, Y, Liu, WN, Chen, QW, Ma, GF, Shi, WH (2012) Cloning of the surface layer gene sllB from Bacillus sphaericus ATCC 14577 and its heterologous expression and purification. Int J Mol Med 29: pp. 677-82
    19. Li, J, Yang, LL, Hu, XM, Zheng, DS, Yan, JP, Yuan, ZM (2013) Nanoscale mono- and multi-layer cylinder structures formed by recombinant S-layer proteins of mosquitocidal Bacillus sphaericus C3-41. Appl Microbiol Biotechnol 97: pp. 7275-83 CrossRef
    20. Hu, XM, Li, J, Hansen, BM, Yuan, ZM (2008) Phylogenetic analysis and heterologous expression of surface layer protein SlpC of Bacillus sphaericus C3-41. Biosci Biotechnol Biochem 72: pp. 1257-63 CrossRef
    21. Zahner, V, Priest, FG (1997) Distribution of restriction endonucleases among some entomopathogenic strains of Bacillus sphaericus. Lett Appl Microbiol 24: pp. 483-7 CrossRef
    22. Xu, D, C么t茅, JC (2003) Phylogenetic relationships between Bacillus species and related genera inferred from comparison of 3鈥?end 16S rDNA and 5鈥?end 16S-23S ITS nucleotide sequences. Int J Syst Evol Microbiol 53: pp. 695-704 CrossRef
    23. Porwal, S, Lal, S, Cheema, S, Kalia, VC (2009) Phylogeny in aid of the present and novel microbial lineages: diversity in Bacillus. PLoS One 4: pp. e4438 CrossRef
    24. Fox, KA, Ramesh, A, Stearns, JE, Bourgogne, A, Reyes-Jara, A, Winkler, WC (2009) Multiple posttranscriptional regulatory mechanisms partner to control ethanolamine utilization in Enterococcus faecalis. Proc Natl Acad Sci U S A 106: pp. 4435-40 CrossRef
    25. Nakamura, LK (1998) Bacillus pseudomycoides sp. nov. Int J Syst Bacteriol 48: pp. 1031-5 CrossRef
    26. Abajy, MY, Kopec, J, Schiwon, K, Burzynski, M, Doring, M, Bohn, C (2007) A type IV-secretion-like system is required for conjugative DNA transport of broad-host-range plasmid pIP501 in gram-positive bacteria. J Bacteriol 189: pp. 2487-96 CrossRef
    27. Lang, J, Planamente, S, Mondy, S, Dessaux, Y, Morera, S, Faure, D (2013) Concerted transfer of the virulence Ti plasmid and companion At plasmid in the Agrobacterium tumefaciens-induced plant tumour. Mol Microbiol 90: pp. 1178-89 CrossRef
    28. Hu, XM, Auwera, G, Timmery, S, Zhu, L, Mahillon, J (2009) Distribution, diversity, and potential mobility of extrachromosomal elements related to the Bacillus anthracis pXO1 and pXO2 virulence plasmids. Appl Environ Microbiol 75: pp. 3016-28 CrossRef
    29. Marchler-Bauer, A, Lu, SN, Anderson, JB, Chitsaz, F, Derbyshire, MK, DeWeese-Scott, C (2011) CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39: pp. D225-9 CrossRef
    30. Zerbino, DR, Birney, E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18: pp. 821-9 CrossRef
    31. Schattner, P, Brooks, AN, Lowe, TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33: pp. W686-9 CrossRef
    32. Lagesen, K, Hallin, P, Rodland, EA, Staerfeldt, HH, Rognes, T, Ussery, DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35: pp. 3100-8 CrossRef
    33. Chaudhuri, RR, Pallen, MJ (2006) xBASE, a collection of online databases for bacterial comparative genomics. Nucleic Acids Res 34: pp. D335-7 CrossRef
    34. Chaudhuri, RR, Loman, NJ, Snyder, LAS, Bailey, CM, Stekel, DJ, Pallen, MJ (2008) xBASE2: a comprehensive resource for comparative bacterial genomics. Nucleic Acids Res 36: pp. D543-6 CrossRef
    35. Huson, DH (1998) SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14: pp. 68-73 CrossRef
    36. Delcher AL, Salzberg SL, Phillippy AM. Using MUMmer to identify similar regions in large sequence sets. Curr Protoc Bioinformatics. 2003; Chapter 10:Unit 10. 13.
    37. Kurtz, S, Phillippy, A, Delcher, AL, Smoot, M, Shumway, M, Antonescu, C, Salzberg, SL (2004) Versatile and open software for comparing large genomes. Genome Biol 5: pp. R12 CrossRef
    38. Friis, C, Wassenaar, TM, Javed, MA, Snipen, L, Lagesen, K, Hallin, PF, Newell, DG, Toszeghy, M, Ridley, A, Manning, G (2010) Genomic characterization of Campylobacter jejuni strain M1. PLoS One 5: pp. e12253 CrossRef
    39. Mavromatis, K, Ivanova, NN, Chen, IMA, Szeto, E, Markowitz, VM, Kyrpides, NC (2009) The DOE-JGI standard operating procedure for the annotations of microbial genomes. Stand Genomic Sci 1: pp. 63-7 CrossRef
    40. Langille, MGI, Brinkman, FSL (2009) IslandViewer: an integrated interface for computational identification and visualization of genomic islands. Bioinformatics 25: pp. 664-5 CrossRef
    41. Alikhan, NF, Petty, NK, Ben Zakour, NL, Beatson, SA (2011) BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12: pp. 402 CrossRef
    42. Podicheti, R, Gollapudi, R, Dong, Q (2009) WebGBrowse鈥揳 web server for GBrowse. Bioinformatics 25: pp. 1550-1 CrossRef
    43. Podicheti, R, Dong, Q (2010) Using WebGBrowse to visualize genome annotation on GBrowse. Cold Spring Harb Protoc 2010: pp. pdb prot5392 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Lysinibacillus sphaericus (formerly named Bacillus sphaericus) is incapable of polysaccharide utilization and some isolates produce active insecticidal proteins against mosquito larvae. Its taxonomic status was changed to the genus Lysinibacillus in 2007 with some other organisms previously regarded as members of Bacillus. However, this classification is mainly based on physiology and phenotype and there is limited genomic information to support it. Results In this study, four genomes of L. sphaericus were sequenced and compared with those of 24 representative strains belonging to Lysinibacillus and Bacillus. The results show that Lysinibacillus strains are phylogenetically related based on the genome sequences and composition of core genes. Comparison of gene function indicates the major difference between Lysinibacillus and the two Bacillus species is related to metabolism and cell wall/membrane biogenesis. Although L. sphaericus mosquitocidal isolates are highly conserved, other Lysinibacillus strains display a large heterogeneity. It was observed that mosquitocidal toxin genes in L. sphaericus were in close proximity to genome islands (GIs) and mobile genetic elements (MGEs). Furthermore, different copies and varying genomic location of the GIs containing binA/binB was observed amongst the different isolates. In addition, a plasmid highly similar to pBsph, but lacking the GI containing binA/binB, was found in L. sphaericus SSII-1. Conclusions Our results confirm the taxonomy of the new genus Lysinibacillus at the genome level and suggest a new species for mosquito-toxic L. sphaericus. Based on our findings, we hypothesize that (1) Lysinibacillus strains evolved from a common ancestor and the mosquitocidal L. sphaericus toxin genes were acquired by horizontal gene transfer (HGT), and (2) capture and loss of plasmids occurs in the population, which plays an important role in the transmission of binA/binB.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700