Feasibility study on application of satellite formations for eliminating the influence from aliasing error of ocean tide model
详细信息    查看全文
  • 作者:Qian Zhao (1) (2)
    WeiPing Jiang (2)
    XinYu Xu (3)
    XianCai Zou (3)

    1. Institute of Earthquake Science
    ; China Earthquake Administration ; Beijing ; 100036 ; China
    2. GNSS Research Center
    ; Wuhan University ; Wuhan ; 430079 ; China
    3. School of Geodesy and Geomatics
    ; Wuhan University ; Wuhan ; 430079 ; China
  • 关键词:satellite formation ; aliasing error ; ocean tide model ; gravity field inversion
  • 刊名:Science China Earth Sciences
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:58
  • 期:3
  • 页码:474-481
  • 全文大小:2,967 KB
  • 参考文献:1. Chen J L, Wilson C R, Swo K W. 2006. Optimized smoothing of gravity recovery and climate experiment(GRACE) time-variable gravity observations. J Geophys Res, 111: B06408
    2. Ditmar P, Teixeira da encarnacao J, Hashemi Farahani H. 2011. Under-standing data noise in gravity field recovery on the basis of inter-satellite ranging measurements acquired by the satellite gravimetry mission GRACE. J Geod, 86: 441鈥?65 CrossRef
    3. Elsaka B. 2010. Simulated satellite formation flights for detecting temporal variations of the earth鈥檚 gravity field. Doctoral Dissertation. Bonn: University of Bonn, Germary
    4. Han S C, Jekeli C, Shum C K. 2004. Time-variable aliasing effects of ocean tides, atmosphere, and continental water mass on monthly mean GRACE gravity field. J Geophys Res, 109: B04403
    5. Jekeli C. 1996. spherical harmonic analysis aliasing and filtering. J Geod, 70: 214鈥?23 CrossRef
    6. Kim J. 2000. Simulation study of a low-low satellite-to-satellite tracking mission. Doctoral Dissertation. Austin: University of Texas at Austin
    7. Klees R, Revtova E A, Gunter B C, et al. 2008. The design of an optimal filter for monthly GRACE gravity models. Geophys J Int, 175: 417鈥?32 CrossRef
    8. Kurtenbach E, Mayer-Gurr T, Eicker A. 2009. Deriving daily snapshots of the Earth鈥檚 gravity field from GRACE L1B data using Kalman filtering. Geophys Res Lett, doi:10.1029/2009GL039564
    9. Loomis B D, Nerem R S, Luthcke S B. 2012. Simulation study of a follow-on gravity mission to GRACE. J Geod, 86: 319鈥?35 CrossRef
    10. Luo Z C, Li Q, Zhang K, et al. 2012. Trend of mass change in the Antarctic ice sheet recovered from the GRACE temporal gravity field. Sci China Earth Sci, 55: 76鈥?2 CrossRef
    11. Lyard F, Lefevre F, Letellier T, et al. 2006. Modelling the global ocean tides: Modern insights from FES2004. Ocean Dyn, 56: 394鈥?15 CrossRef
    12. Ray R D, Luthcke S B. 2006. Tide model errors and GRACE gravimetry: Towards a more realistic assessment. Geophys J Int, 167: 1055鈥?059 CrossRef
    13. Savcenko R, Bosch W. 2008. EOT08a-empirical ocean tide model from multi-mission satellite altimetry. Report No.81. Deutsches Geodatisches Forschungsinstitut (DGFI), Munchen, Germany
    14. Seo K W, Wilson C R, Han S C, et al. 2008a. Gravity Recovery and Climate Experiment (GRACE) alias error from ocean tides. J Geophys Res, 113: B03405
    15. Seo K W, Wilson C R, Chen J L, et al. 2008b. GRACE鈥檚 spatial aliasing error. Geophys J Int, 172: 41鈥?8 CrossRef
    16. Sneeuw N, Flury J, Rummel R. 2005. Science requirements on future missions and simulated mission scenarios. Earth Moon Planet, 94: 113鈥?42 CrossRef
    17. Tapley B D, Bettadpur S, Ries J C, et al. 2004. GRACE measurements of mass variability in the Earth system. Science, 305: 503鈥?05 CrossRef
    18. Visser P, Sneeuw N, Reubelt T, et al. 2010. Space-borne gravimetric satellite constellations and ocean tides: Aliasing effects. Geophys J Int, 181: 789鈥?05
    19. Wahr J, Molenaar M, Bryan F. 1998. Time variablility of the Earth鈥檚 gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res, 103: 30205鈥?0229 CrossRef
    20. Wahr J, Swenson S, Zlotnicki V, et al. 2004. Time-variable gravity from GRACE: First results. Geophys Res Lett, 31: L11501 CrossRef
    21. Watkins M, Sprague G, Case K, et al. 2008. Time Variable Gravity Mapping Mission (Grace Follow-On/Grace II) Study. GRACE Science Team Meeting. 237鈥?50
    22. Wiese D N, Folkner W M, Nerem R S. 2009. Alternative mission architectures for a gravity recovery satellite mission. J Geod, 83: 569鈥?81 CrossRef
    23. Wiese D N, Visser P, Nerem R S. 2011. Estimating low resolution gravity fields at short time intervals to reduce temporal aliasing errors. Adv Space Res, 48: 1094鈥?107 CrossRef
    24. Zenner L, Gruber T, J盲ggi A, et al. 2010. Propogation of atmospheric model errors to gravity potential harmonics-impact on GRACE de-aliasing. Geophys J Int, 182: 797鈥?07 CrossRef
    25. Zhao Q, Jiang W P, Xu X Y, et al. 2011. Analysis of influence of aliasing effects on GRACE gravity solution. J Geod Geodyn, 31: 123鈥?26
    26. Zhao Q. 2012. Methodology research and simulation analysis of the Earth鈥檚 gravity field determination using satellite formation. Doctoral Dissertation. Wuhan: Wuhan University, China
  • 刊物主题:Earth Sciences, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1869-1897
文摘
Currently, aliasing error of temporal signal model becomes the main factor constraining the accuracy of temporal gravity field. In provision of three types of satellite formations, i.e., GRACE-type, Pendulum-type and n-s-Cartwheel-type, which are suitable for gravity mission and composed of observation in different directions, here we design two cases and conduct a simulation experiment on the feasibility to apply satellite formations for eliminating the influence from the aliasing error of ocean tide models. The result of our experiment shows that, when the aliasing error is disregarded, n-s-Cartwheel formation can provide the best conditions for gravity field determination, which, compared with GRACE-type, can improve the accuracy by 43%. When aliasing error of the ocean tide model acts as the main source of error, the satellite formation applied in dynamic method for gravity field inversion cannot eliminate aliasing or improve the accuracy of gravity field. And due to its higher sensitivity to the high-degree variation of gravity field, the Cartwheel-type formation, which includes the radial observation, can result in the gravity field containing more high-frequency signals for the ocean tide model error, and lead to a dramatically larger error.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700