Identification and comparative analysis of differentially expressed miRNAs in leaves of two wheat (Triticum aestivum L.) genotypes during dehydration stress
详细信息    查看全文
  • 作者:Xingli Ma (1) (2) (3)
    Zeyu Xin (1) (2) (3)
    Zhiqiang Wang (1) (2) (3)
    Qinghua Yang (1) (2) (3)
    Shulei Guo (1) (2) (3)
    Xiaoyang Guo (1) (2) (3)
    Liru Cao (1) (2) (3)
    Tongbao Lin (1) (2) (3)

    1. College of Agronomy
    ; Henan Agricultural University ; Zhengzhou ; 450002 ; China
    2. Collaborative Innovation Center of Henan Grain Crops
    ; Zhengzhou ; 450002 ; China
    3. National Key Laboratory of Wheat and Maize Crop Science
    ; Zhengzhou ; 450002 ; China
  • 关键词:Dehydration stress ; Triticum aestivum L ; Differentially expressed miRNAs ; Comparative analysis
  • 刊名:BMC Plant Biology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:15
  • 期:1
  • 全文大小:1,623 KB
  • 参考文献:1. Jaworski K, Grzegorzewska W, Swiezawska B, Szmidt-Jaworska A. Participation of second messengers in plant responses to abiotic stress. Postepy Biologii Komorki. 2010;37:847鈥?8.
    2. Suarez LC, Fernandez RR. Signaling pathway in plants affected by salinity and drought. Itea-Informacion Tecnica Economica Agraria. 2010;106:157鈥?9.
    3. Kantar M, Lucas SJ, Budak H. miRNA expression patterns of / Triticum dicoccoides in response to shock drought stress. Planta. 2011;233:471鈥?4. CrossRef
    4. Carrington JC, Ambros V. Role of microRNAs in plant and animal development. Science. 2003;301:336鈥?. CrossRef
    5. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281鈥?7. CrossRef
    6. Jover-Gil S, Candela H, Ponce MR. Plant microRNAs and development. Int J Dev Biol. 2005;49:733鈥?4. CrossRef
    7. Li YF, Zheng Y, Jagadeeswaran G, Sunkar R. Characterization of small RNAs and their target genes in wheat seedlings using sequencing-based approaches. Plant Sci. 2013;203鈥?04:17鈥?4. CrossRef
    8. Sun F, Guo G, Du J, Guo W, Peng H, Ni Z, et al. Whole-genome discovery of miRNAs and their targets in wheat (Triticum aestivum L.). BMC Plant Biol. 2014;14:142. CrossRef
    9. Frazier TP, Sun GL, Burklew CE, Zhang BH. Salt and drought stresses induce the aberrant expression of microRNA genes in tobacco. Mol Biotechnol. 2011;49:159鈥?5. CrossRef
    10. Sunkar R, Chinnusamy V, Zhu JH, Zhu JK. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sc. 2007;12:301鈥?. CrossRef
    11. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science. 2006;312:436鈥?. CrossRef
    12. Tang Z, Zhang L, Xu C, Yuan S, Zhang F, Zheng Y, et al. Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genic male-sterile line by deep sequencing. Plant Physiol. 2012;159:721鈥?8. CrossRef
    13. Wang B, Sun YF, Song N, Wang XJ, Feng H, Huang LL, et al. Identification of UV-B-induced microRNAs in wheat. Genet Mol Res. 2013;12:4213鈥?1. CrossRef
    14. Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z, et al. Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Bio. 2010;10:123. CrossRef
    15. Zhao BT, Liang RQ, Ge LF, Li W, Xiao HS, Lin HX, et al. Identification of drought-induced microRNAs in rice. Biochem Bioph Res Co. 2007;354:585鈥?0. CrossRef
    16. Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L. Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot. 2010;61:4157鈥?8. CrossRef
    17. Liu HH, Tian X, Li YJ, Wu CA, Zheng CC. Microarray-based analysis of stress-regulated microRNAs in / Arabidopsis thaliana. RNA. 2008;14:836鈥?3. CrossRef
    18. Lu SF, Sun YH, Chiang VL. Stress-responsive microRNAs in / Populus. Plant J. 2008;55:131鈥?1. CrossRef
    19. Audic S, Claverie JM. The significance of digital gene expression profiles. Genome Res. 1997;7:986鈥?5.
    20. Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, et al. Criteria for annotation of plant microRNAs. Plant Cell. 2008;20:3186鈥?0. CrossRef
    21. Lv DK, Bai X, Li Y, Ding XD, Ge Y, Cai H, et al. Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene. 2010;459:39鈥?7. CrossRef
    22. Jia XY, Wang WX, Ren LG, Chen QJ, Mendu V, Villcut B, et al. Differential and dynamic regulation of miR398 in response to ABA and salt stress in / Populus tremula and / Arabidopsis thaliana. Plant Mol Biol. 2009;71:51鈥?. CrossRef
    23. Ding D, Zhang LF, Wang H, Liu ZJ, Zhang ZX, Zheng YL. Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot. 2009;103:29鈥?8. CrossRef
    24. Wu G, Poethig RS. Temporal regulation of shoot development in / Arabidopsis thaliana by miR156 and its target SPL3. Development. 2006;133:3539鈥?7. CrossRef
    25. Arora R, Agarwal P, Ray S, Singh AK, Singh VP, Tyagi AK, et al. MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics. 2007;8:242. CrossRef
    26. Liu SH, Wang NF, Zhang PY, Cong B, Lin X, Wang S, et al. Next-generation sequencing-based transcriptome profiling analysis of / Pohlia nutans reveals insight into the stress-relevant genes in antarctic moss. Extremophiles. 2013;17:391鈥?03. CrossRef
    27. Phillips JR, Dalmay T, Bartels D. The role of small RNAs in abiotic stress. Febs Letters. 2007;581:3592鈥?. CrossRef
    28. Mica E, Gianfranceschi L, Pe鈥?ME. Characterization of five microRNA families in maize. J Exp Bot. 2006;57:2601鈥?2. CrossRef
    29. Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M. Regulation of copper homeostasis by micro-RNA in / Arabidopsis. J Biol Chem. 2007;282:16369鈥?8. CrossRef
    30. Sunkar R, Kapoor A, Zhu JK. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in / Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell. 2006;18:2051鈥?5. CrossRef
    31. Shukla LI, Chinnusamy V, Sunkar R. The role of microRNAs and other endogenous small RNAs in plant stress responses. BBA-Gene Regul Mech. 2008;1779:743鈥?.
    32. Makarova KS, Aravind L, Daly MJ, Koonin EV. Specific expansion of protein families in the radioresistant bacterium / Deinococcus radiodurans. Genetica. 2000;108:25鈥?4. CrossRef
    33. Nardini M, Dijkstra BW. 伪/尾 Hydrolase fold enzymes: the family keeps growing. Curr Opin Struc Biol. 1999;9:732鈥?. CrossRef
    34. Guilfoyle TJ, Hagen G. Auxin response factors. Curr Opin Struc Biol. 2007;10:453鈥?0. CrossRef
    35. Ulmasov T, Hagen G, Guilfoyle TJ. ARF1, a transcription factor that binds to auxin response elements. Science. 1997;276:1865鈥?. CrossRef
    36. Tiwari SB, Hagen G, Guilfoyle T. The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell. 2003;15:533鈥?3. CrossRef
    37. Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M. Auxin regulates SCF (TIR1)-dependent degradation of AUX/IAA proteins. Nature. 2001;414:271鈥?. CrossRef
    38. Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Shinozaki KY. NAC transcription factors in plant abiotic stress responses. BBA-Gene Regul Mech. 1819;2012:97鈥?03.
    39. Tran LSP, Nishiyama R, Shinozaki KY, Shinozaki K. Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops. 2010;1:32鈥?. CrossRef
    40. Hu HH, Dai MQ, Yao JL, Xiao B, Li X, Zhang Q, et al. Overexpressing a / NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A. 2006;103:12987鈥?2. CrossRef
    41. Xie Q, Frugis G, Colgan D, Chua NH. / Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 2000;14:3024鈥?6. CrossRef
    42. Guo HS, Xie Q, Fei JF, Chua NH. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to down regulate auxin signals for Arabidopsis lateral root development. Plant Cell. 2005;17:1376鈥?6. CrossRef
    43. Xie Q, Guo HS, Dallman G, Fang S, Weissman AM, Chua NH. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature. 2002;419:167鈥?0. CrossRef
    44. Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MCP. microRNA-mediated repression of / rolled leaf1 specifies maize leaf polarity. Nature. 2004;428:84鈥?. CrossRef
    45. Agalou A, Purwantomo S, Overna篓s E, Johannesson H, Zhu X, Estiati A, et al. A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members. Plant Mol Biol. 2008;66:87鈥?03. CrossRef
    46. Dai MQ, Hu YF, Ma Q, Zhao Y, Zhou DX. Functional analysis of rice / HOMEOBOX4 (Oshox4) gene reveals a negative function in gibberellins responses. Plant Mol Biol. 2008;66:289鈥?01. CrossRef
    47. Dezar CA, Gago GM, Gonzalez DH, Chan RL. / Hahb-4, a sunflower homeobox-leucine zipper gene, is a developmental regulator and confers drought tolerance to / Arabidopsis thaliana plants. Transgenic Res. 2005;14:429鈥?0. CrossRef
    48. Baima S, Possenti M, Matteucci A, Wisman E, Altamura MM, Ruberti I, et al. The Arabidopsis ATHB-8 HD-zip protein acts as a differentiation-promoting transcription factor of the vascular meristems. Plant Physiol. 2001;126:643鈥?5. CrossRef
    49. Ilegems M, Douet V, Meylan-Bettex M, Uyttewaal M, Brand L, Bowman JL, et al. Interplay of auxin, KANADI and Class III HD-ZIP transcription factors in vascular tissue formation. Development. 2010;137:975鈥?4. CrossRef
    50. Mantovani R. The molecular biology of the CCAAT-binding factor NF-Y. Gene. 1999;239:15鈥?7. CrossRef
    51. Maity SN, de Crombrugghe B. Role of the CCAAT-binding protein CBF/NF-Y in transcription. Trends Biochem Sci. 1998;23:174鈥?. CrossRef
    52. Stephenson TJ, McIntyre CL, Collet C, Xue GP. Genome-wide identification and expression analysis of the NF-Y family of transcription factors in / Triticum aestivum. Plant Mol Biol. 2007;65:77鈥?2. CrossRef
    53. Li WX, Oono Y, Zhu JH, He XJ, Wu JM, Iida K, et al. The / Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell. 2008;20:2238鈥?1. CrossRef
    54. Kawaguchi R, Bailey-Serres J. Regulation of translational initiation in plants. Curr Opin Plant Biol. 2002;5:460鈥?. CrossRef
    55. Szick-Miranda K, Jayacharan S, Tam A, Werner-Fraczek J, Williams AJ, Bailey-Serres J. Evaluation of translational control mechanisms in response to oxygen deprivation in maize. Russ J Plant Physl. 2003;50:774鈥?6. CrossRef
    56. Bartels D, Salamini F. Desiccation tolerance in the resurrection plant / Craterostigma plantagineum. a contribution to the study of drought tolerance at the molecular level. Plant Physiol. 2001;127:1346鈥?3. CrossRef
    57. King MC, Wilson AC. Evolution at two levels in humans and chimpanzees. Science. 1975;188:107鈥?6. CrossRef
    58. Yin XL, Jiang L, Song NH, Yang H. Toxic reactivity of wheat ( / Triticum aestivum) plants to herbicide isoproturon. J Agric Food Chem. 2008;56:4825鈥?1. CrossRef
    59. Flexas J, Ribas-Carb贸 M, Bota J, Galm茅s J, Henkle M, Mart铆nez-Ca帽ellas S, et al. Decreased rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytologist. 2006;172:73鈥?2.
    60. Inada N, Wildermuth MC. Novel tissue preparation method and cell-specific marker for laser microdissection of / Arabidopsis mature leaf. Planta. 2005;221:9鈥?6. CrossRef
    61. Li Y, Zhang Z, Liu F, Vongsangnak W, Jing Q, Shen BR. Performance comparison and evaluation of software tools for microRNA deep-sequencing data analysis. Nucleic Acids Res. 2012;40:4298鈥?05. CrossRef
    62. Romualdi C, Bortoluzzi S, D鈥橝lessi F, Danieli GA. IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiol Genomics. 2003;12:159鈥?2.
    63. Qin QH, Wang ZL, Tian LQ, Gan HY, Zhang SW, Zeng ZJ. The integrative analysis of microRNA and mRNA expression in / Apis mellifera following maze-based visual pattern learning. Insect Sci. 2014;21:619鈥?6. CrossRef
    64. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2鈭捨斘擟T method. Methods. 2001;25:402鈥?. CrossRef
  • 刊物主题:Plant Sciences; Agriculture; Tree Biology;
  • 出版者:BioMed Central
  • ISSN:1471-2229
文摘
Background MicroRNAs (miRNAs) play critical roles in the processes of plant growth and development, but little is known of their functions during dehydration stress in wheat. Moreover, the mechanisms by which miRNAs confer different levels of dehydration stress tolerance in different wheat genotypes are unclear. Results We examined miRNA expressions in two different wheat genotypes, Hanxuan10, which is drought-tolerant, and Zhengyin1, which is drought-susceptible. Using a deep-sequencing method, we identified 367 differentially expressed miRNAs (including 46 conserved miRNAs and 321 novel miRNAs) and compared their expression levels in the two genotypes. Among them, 233 miRNAs were upregulated and 10 were downregulated in both wheat genotypes after dehydration stress. Interestingly, 13 miRNAs exhibited opposite patterns of expression in the two wheat genotypes, downregulation in the drought-tolerant cultivar and upregulation in the drought-susceptible cultivar. We also identified 111 miRNAs that were expressed predominantly in only one or the other genotype after dehydration stress. We verified the expression patterns of a number of representative miRNAs using qPCR analysis and northern blot, which produced results consistent with those of the deep-sequencing method. Moreover, monitoring the expression levels of 10 target genes by qPCR analysis revealed negative correlations with the levels of their corresponding miRNAs. Conclusions These results indicate that differentially expressed patterns of miRNAs between these two genotypes may play important roles in dehydration stress tolerance in wheat and may be a key factor in determining the levels of stress tolerance in different wheat genotypes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700