In vitro assessment of antibody-conjugated gold nanorods for systemic injections
详细信息    查看全文
  • 作者:Sonia Centi (1)
    Francesca Tatini (2)
    Fulvio Ratto (2)
    Alessio Gnerucci (1)
    Raffaella Mercatelli (3)
    Giovanni Romano (1)
    Ida Landini (4)
    Stefania Nobili (4)
    Andrea Ravalli (3)
    Giovanna Marrazza (3)
    Enrico Mini (5)
    Franco Fusi (1)
    Roberto Pini (2)

    1. Dipartimento di Scienze Biomediche Sperimentali e Cliniche 鈥楳ario Serio鈥? Universit脿 degli Studi di Firenze
    ; Viale Pieraccini 6 ; 50139 ; Firenze ; Italy
    2. Istituto di Fisica Applicata 鈥楴ello Carrara鈥? Consiglio Nazionale delle Ricerche
    ; Via Madonna del Piano 10 ; 50019 ; Sesto Fiorentino ; Italy
    3. Dipartimento di Chimica 鈥楿go Shiff鈥? Universit脿 degli Studi di Firenze
    ; Via della Lastruccia 3 ; 50019 ; Sesto Fiorentino ; Italy
    4. Dipartimento di Scienze della Salute
    ; Universit脿 degli Studi di Firenze ; Viale Pieraccini 6 ; 50139 ; Firenze ; Italy
    5. Dipartimento di Medicina Sperimentale e Clinica
    ; Universit脿 degli Studi di Firenze ; Largo Brambilla 3 ; 50134 ; Firenze ; Italy
  • 关键词:Gold nanorods ; Cancer antigen 125 ; Active targeting ; Competitive assay ; Matrix effect ; Blood compatibility
  • 刊名:Journal of Nanobiotechnology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:12
  • 期:1
  • 全文大小:1,577 KB
  • 参考文献:1. Mladenov, E, Magin, S, Soni, A, Iliakis, G (2013) DNA double-strand break repair as determinant of cellular radiosensitivity to killing and target in radiation therapy. Front Oncol 10: pp. 113
    2. Paulides, MM, Stauffer, PR, Neufeld, E, Maccarini, PF, Kyriakou, A, Canters, RA, Diederich, CJ, Bakker, JF, Rhoon, GC (2013) Simulation techniques in hyperthermia treatment planning. Int J Hyperthermia 19: pp. 346-357 CrossRef
    3. Hainfeld, JF, Dilmanian, FA, Slatkin, DN, Smilowitz, HM (2008) Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol 60: pp. 977-985 CrossRef
    4. Ibsen, S, Schutt, CE, Esener, S (2013) Microbubble-mediated ultrasound therapy: a review of its potential in cancer treatment. Drug Des Devel Ther 7: pp. 375-388 CrossRef
    5. Tiwari, PM, Vig, K, Dennis, VA, Singh, SR (2011) Functionalized gold nanoparticles and their biomedical applications. Nanomaterials 1: pp. 31-63 CrossRef
    6. Alkilany, AM, Murphy, CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?. J Nanopart Res 12: pp. 2313-2333 CrossRef
    7. Jeong, EH, Jung, G, Hong, CA, Lee, H (2014) Gold nanoparticle (AuNP)-based drug delivery and molecular imaging for biomedical applications. Arch Pharm Res 37: pp. 53-59 CrossRef
    8. Khan, MS, Vishakante, GD, Siddaramaiah, H (2013) Gold nanoparticles: a paradigm shift in biomedical applications. Adv Colloid Interface Sci 199鈥?00: pp. 44-58 CrossRef
    9. Papasani, MR, Wang, G, Hill, RA (2012) Gold nanoparticles: the importance of physiological principles to devise strategies for targeted drug delivery. Nanomed Nanotech Biol Med 8: pp. 804-814 CrossRef
    10. Tatini, F, Landini, I, Scaletti, F, Massai, L, Centi, S, Ratto, F, Nobili, S, Romano, G, Fusi, F, Messori, L, Mini, E, Pini, R (2014) Size dependent biological profiles of PEGylated gold nanorods. J Mater Chem B 2: pp. 6072-6080 CrossRef
    11. Fang, J, Chen, YC (2013) Nanomaterials for photohyperthermia: a review. Curr Pharm Des 19: pp. 6622-6634 CrossRef
    12. Melancon, MP, Zhou, M, Li, C (2011) Cancer theranostics with near-infrared light-activatable multimodal nanoparticles. Acc Chem Res 44: pp. 947-956 CrossRef
    13. Jain, PK, Huang, X, El-Sayed, IH, El-Sayed, MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41: pp. 1578-1586 CrossRef
    14. Young, JK, Figueroa, ER, Drezek, RA (2012) Tunable nanostructures as photothermal theranostic agents. Ann Biomed Eng 40: pp. 438-459 CrossRef
    15. Choi, KY, Liu, G, Lee, S, Chen, X (2012) Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale 4: pp. 330-342 CrossRef
    16. Ghosh, P, Han, G, De, M, Kim, CK, Rotello, VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60: pp. 1307-1315 CrossRef
    17. Chen, H, Shao, L, Li, Q, Wang, J (2013) Gold nanorods and their plasmonic properties. Chem Soc Rev 42: pp. 2679-2724 CrossRef
    18. Ratto, F, Matteini, P, Rossi, F, Pini, R (2010) Size and shape control in the overgrowth of gold nanorods. J Nanopart Res 12: pp. 2029-2036 CrossRef
    19. Li, N, Zhao, P, Astruc, D (2014) Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew Chem Int Ed Engl 53: pp. 1756-1789 CrossRef
    20. Alkilany, AM, Thompson, LB, Boulos, SP, Sisco, P, Murphy, CJ (2012) Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev 64: pp. 190-199 CrossRef
    21. Zhang, Z, Wang, J, Chen, C (2013) Gold nanorods based platforms for light-mediated theranostics. Theranostics 3: pp. 223-238 CrossRef
    22. Choi, WI, Sahu, A, Kim, YH, Tae, G (2012) Photothermal cancer therapy and imaging based on gold nanorods. Ann Biomed Eng 40: pp. 534-546 CrossRef
    23. Wang, Y, Black, KCL, Luehmann, H, Li, W, Zhang, Y, Cai, X, Wan, D, Liu, SY, Li, M, Kim, P, Li, ZY, Wang, LV, Liu, Y, Xia, Y (2013) Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano 7: pp. 2068-2077 CrossRef
    24. Jokerst, JV, Cole, AJ, Sompel, D, Gambhir, SS (2012) Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via raman imaging in living mice. ACS Nano 6: pp. 10366-10377 CrossRef
    25. Kennedy, LC, Bear, AS, Young, JK, Lewinski, NA, Kim, J, Foster, AE, Drezek, RA (2011) T cells enhance gold nanoparticle delivery to tumors in vivo. Nanoscale Res Lett 6: pp. 283 CrossRef
    26. Perrault, SD, Walkey, C, Jennings, T, Fischer, HC, Chan, WC (2009) Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 9: pp. 1909-1915 CrossRef
    27. Maltzahn, G, Park, JH, Agrawal, A, Bandaru, NK, Das, SK, Sailor, MJ, Bhatia, SN (2009) Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res 69: pp. 3892-3900 CrossRef
    28. Niidome, T, Yamagata, M, Okamoto, Y, Akiyama, Y, Takahashi, H, Kawano, T, Katayama, Y, Niidome, Y (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 114: pp. 343-347 CrossRef
    29. Rayavarapu, RG, Petersen, W, Hartsuiker, L, Chin, P, Janssen, H, Leeuwen, FWB, Otto, C, Manohar, S, Leeuwen, TG (2010) In vitro toxicity studies of polymer-coated gold nanorods. Nanotechnology 21: pp. 145101 CrossRef
    30. Joshi, PP, Yoon, SJ, Hardin, WG, Emelianov, S, Sokolov, KV (2013) Conjugation of antibodies to gold nanorods through Fc portion: synthesis and molecular specific imaging. Bioconjug Chem 19: pp. 878-888 CrossRef
    31. Lee, E, Hong, Y, Choi, J, Haam, S, Suh, JS, Huh, YM, Yang, J (2012) Highly selective CD44-specific gold nanorods for photothermal ablation of tumorigenic subpopulations generated in MCF7 mammospheres. Nanotechnology 23: pp. 465101 CrossRef
    32. Charan, S, Sanjiv, K, Singh, N, Chien, FC, Chen, YF, Nergui, NN, Huang, SH, Kuo, CW, Lee, TC, Chen, P (2012) Development of chitosan oligosaccharide-modified gold nanorods for in vivo targeted delivery and noninvasive imaging by NIR irradiation. Bioconjug Chem 23: pp. 2173-2182 CrossRef
    33. Wang, J, Sefah, K, Altman, MB, Chen, T, You, M, Zhao, Z, Huang, CZ, Tan, W (2013) Aptamer-conjugated nanorods for targeted photothermal therapy of prostate cancer stem cells. Chem Asian J 10: pp. 2417-2422 CrossRef
    34. Wang, J, Zhu, G, You, M, Song, E, Shukoor, MI, Zhang, K, Altman, MB, Chen, Y, Zhu, Z, Huang, CZ, Tan, W (2012) Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano 6: pp. 5070-5077 CrossRef
    35. Yang, X, Liu, X, Liu, Z, Pu, F, Ren, J, Qu, X (2012) Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles. Adv Mater 24: pp. 2890-2895 CrossRef
    36. Heidari, Z, Sariri, R, Salouti, M (2013) Gold nanorods-bombesin conjugate as a potential targeted imaging agent for detection of breast cancer. J Photochem Photobiol B 130: pp. 40-46 CrossRef
    37. Bartneck, M, Ritz, T, Keul, HA, Wambach, M, Bornemann, J, Gbureck, U, Ehling, J, Lammers, T, Heymann, F, Gassler, N, L眉dde, T, Trautwein, C, Groll, J, Tacke, F (2012) Peptide-functionalized gold nanorods increase liver injury in hepatitis. ACS Nano 6: pp. 8767-8777 CrossRef
    38. Wang, J, Dong, B, Chen, B, Jiang, Z, Song, H (2012) Selective photothermal therapy for breast cancer with targeting peptide modified gold nanorods. Dalton Trans 41: pp. 11134-11144 CrossRef
    39. Yang, X, Liu, Z, Li, Z, Pu, F, Ren, J, Qu, X (2013) Near-infrared-controlled, targeted hydrophobic drug-delivery system for synergistic cancer therapy. Chemistry 19: pp. 10388-10394 CrossRef
    40. Huff, TB, Tong, L, Zhao, Y, Hansen, MN, Cheng, JX, Wei, A (2007) Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2: pp. 125-132 CrossRef
    41. Tong, L, Wei, QS, Wei, A, Cheng, JX (2009) Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem Photobiol 85: pp. 21-32 CrossRef
    42. Lu, W, Zhang, GD, Zhang, R, Flores, LG, Huang, Q, Gelovani, JG, Li, C (2010) Tumor site-specific silencing of NF-kappa B p65 by targeted hollow gold nanosphere-mediated photothermal transfection. Cancer Res 70: pp. 3177-3188 CrossRef
    43. Eghtedari, M, Liopo, AV, Copland, JA, Oraevsky, AA, Motamedi, M (2009) Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells. Nano Lett 9: pp. 287-291 CrossRef
    44. Huang, XH, Peng, XH, Wang, YQ, Wang, YX, Shin, DM, El-Sayed, MA, Nie, SM (2010) A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands. ACS Nano 4: pp. 5887-5896 CrossRef
    45. Ungureanu, C, Kroes, R, Petersen, W, Groothuis, TAM, Ungureanu, F, Janssen, H, Leeuwen, FWB, Kooyman, RPH, Manohar, S, Leeuwen, TG (2011) Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics. Nano Lett 11: pp. 1887-1894 CrossRef
    46. Weitman, SD, Lark, RH, Coney, LR, Fort, DW, Frasca, V, Zurawski, VR, Karmen, BA (1992) Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 52: pp. 3396-3401
    47. Saul, JM, Annapragada, AV, Bellamkonda, RV (2006) A dual-ligand approach for enhancing targeting selectivity of therapeutic nanocarriers. J Control Rel 114: pp. 277-287 CrossRef
    48. Ying, X, Wen, H, Lu, WL, Du, J, Guo, J, Tian, W, Men, Y, Zhang, Y, Li, RJ, Yang, TY, Shang, DW, Lou, JN, Zhang, LR, Zhang, Q (2010) Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Control Rel 141: pp. 183-192 CrossRef
    49. Kluza, E, Schaft, DWJ, Hautvast, PAI, Mulder, WJM, Mayo, KH, Griffioen, AW, Strijkers, GJ, Nicolay, K (2010) Synergistic targeting of alpha(v)beta(3) integrin and galectin-1 with heteromultivalent paramagnetic liposomes for combined MR imaging and treatment of angiogenesis. Nano Lett 10: pp. 52-58 CrossRef
    50. Qian, X, Peng, XH, Ansari, DO, Yin-Goen, Q, Chen, GZ, Shin, DM, Yang, L, Young, AN, Wang, MD, Nie, S (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature Biotechnology 26: pp. 83-90 CrossRef
    51. Shah, NB, Vercellotti, GM, White, JG, Fegan, A, Wagner, CR, Bischof, JC (2012) Blood鈥搉anoparticle interactions and in vivo biodistribution: impact of surface PEG and ligand properties. Mol Pharmaceutics 9: pp. 2146-2155
    52. Grabarek, Z, Gergely, J (1990) Zero-length crosslinking procedure with the use of active esters. Anal Biochem 185: pp. 131-135 CrossRef
    53. Das, M, Mordoukhovski, L, Kumacheva, E (2008) Sequestering gold nanorods by polymer microgels. Adv Mater 20: pp. 2371-2375 CrossRef
    54. Dickerson, EB, Dreaden, EC, Huang, X, El-Sayed, IH, Chu, H, Pushpanketh, S, McDonald, JF, El-Sayed, MA (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269: pp. 57-66 CrossRef
    55. Choi, WI, Kim, JY, Kang, C, Byeon, CC, Kim, YH, Tae, G (2011) Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano 5: pp. 1995-2003 CrossRef
    56. Bagley, AF, Hill, S, Rogers, GS, Bhatia, SN (2013) Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source. ACS Nano 7: pp. 8089-8097 CrossRef
    57. Mercatelli, R, Romano, G, Ratto, F, Matteini, P, Centi, S, Cialdai, F, Monici, M, Pini, R, Fusi, F (2011) Quantitative measurement of scattering and extinction spectra of nanoparticles by darkfield microscopy. Appl Phys Lett 99: pp. 131113 CrossRef
    58. Mercatelli, R, Ratto, F, Centi, S, Soria, S, Romano, G, Matteini, P, Quercioli, F, Pini, R, Fusi, F (2013) Quantitative readout of optically encoded gold nanorods using an ordinary dark-field microscope. Nanoscale 5: pp. 9645 CrossRef
    59. Tatini, F, Ratto, F, Centi, S, Landini, I, Nobili, S, Witort, E, Fusi, F, Capaccioli, S, Mini, E, Pini, R (2014) Specific markers, micro-environmental anomalies and tropism: opportunities for gold nanorods targeting of tumors in laser-induced hyperthermia. Proc. SPIE 8955: pp. 895519 CrossRef
    60. Ratto F, Witort E, Tatini F, Centi S, Lazzeri L, Carta F, Lulli M, Vullo D, Fusi F, Supuran CT, Scozzafava A, Capaccioli S, Pini R: Plasmonic particles that hit hypoxic cells. / Adv Funct Mater 2014, doi:10.1002/adfm.201402118.
    61. Rayavarapu, RG, Petersen, W, Ungureanu, C, Post, JN, Leeuwen, TG, Manohar, S (2007) Synthesis and bioconjugation of gold nanoparticles as potential molecular probes for light-based imaging techniques. Int J Biomed Imag 2007: pp. 29817 CrossRef
    62. Kim, D, Jeong, YY, Jon, S (2010) A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4: pp. 3689-3696 CrossRef
    63. Carpin, LB, Bickford, LR, Agollah, G, Yu, TK, Schiff, R, Li, Y, Drezek, RA (2011) Immunoconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells. Breast Cancer Res Treat 125: pp. 27-34 CrossRef
    64. England, CG, Priest, T, Zhang, G, Sun, X, Patel, DN, McNally, LR, Berkel, V, Gobin, AM, Frieboes, HB (2013) Enhanced penetration into 3D cell culture using two and three layered gold nanoparticles. Int J Nanomed 8: pp. 3603-3617
    65. Yao, L, Daniels, J, Moshnikova, A, Kuznetsov, S, Ahmed, A, Engelman, DM, Reshetnyak, YK, Andreev, OA (2013) pHLIP peptide targets nanogold particles to tumors. Proc Natl Acad Sci USA 110: pp. 465-470 CrossRef
    66. Nikoobakht, B, El-Sayed, MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15: pp. 1957-1962 CrossRef
    67. Zhang, G, Yang, Z, Lu, W, Zhang, R, Huang, Q, Tian, M, Li, L, Liang, D, Li, C (2009) Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomater 30: pp. 1928-1936 CrossRef
    68. P茅rez-Juste, J, Pastoriza-Santos, I, Liz-Marz谩n, LM, Mulvaney, P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249: pp. 1870-1901 CrossRef
    69. Ratto, F, Matteini, P, Cini, A, Centi, S, Rossi, F, Fusi, F, Pini, R (2011) CW laser-induced photothermal conversion and shape transformation of gold nanodogbones in hydrated chitosan films. J Nanopart Res 13: pp. 4337-4348 CrossRef
    70. Matteini, P, Ratto, F, Rossi, F, Angelis, M, Cavigli, L, Pini, R (2012) Hybrid nanocomposite films for laser-activated tissue bonding. J Biophotonics 5: pp. 868-877 CrossRef
    71. Etchegoin, PG, Ru, EC, Meyer, M (2006) An analytic model for the optical properties of gold. J Chem Phys 125: pp. 164705 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Biotechnology
    Nanotechnology
  • 出版者:BioMed Central
  • ISSN:1477-3155
文摘
Background The interest for gold nanorods in biomedical optics is driven by their intense absorbance of near infrared light, their biocompatibility and their potential to reach tumors after systemic administration. Examples of applications include the photoacoustic imaging and the photothermal ablation of cancer. In spite of great current efforts, the selective delivery of gold nanorods to tumors through the bloodstream remains a formidable challenge. Their bio-conjugation with targeting units, and in particular with antibodies, is perceived as a hopeful solution, but the complexity of living organisms complicates the identification of possible obstacles along the way to tumors. Results Here, we present a new model of gold nanorods conjugated with anti-cancer antigen 125 (CA125) antibodies, which exhibit high specificity for ovarian cancer cells. We implement a battery of tests in vitro, in order to simulate major nuisances and predict the feasibility of these particles for intravenous injections. We show that parameters like the competition of free CA125 in the bloodstream, which could saturate the probe before arriving at the tumors, the matrix effect and the interference with erythrocytes and phagocytes are uncritical. Conclusions Although some deterioration is detectable, anti-CA125-conjugated gold nanorods retain their functional features after interaction with blood tissue and so represent a powerful candidate to hit ovarian cancer cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700