Nuclear bile acid signaling through the farnesoid X receptor
详细信息    查看全文
  • 作者:Claire Mazuy (1) (2) (3) (4)
    Audrey Helleboid (1) (2) (3) (4)
    Bart Staels (1) (2) (3) (4)
    Philippe Lefebvre (1) (2) (3) (4)

    1. European Genomic Institute for Diabetes (EGID)
    ; 59000 ; Lille ; France
    2. INSERM UMR1011-B芒timent J&K
    ; 59000 ; Lille ; France
    3. University Lille 2
    ; 59000 ; Lille ; France
    4. Institut Pasteur de Lille
    ; 59019 ; Lille ; France
  • 关键词:FXR ; Nuclear receptor ; Bile acids ; Homeostasis ; Metabolism
  • 刊名:Cellular and Molecular Life Sciences (CMLS)
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:72
  • 期:9
  • 页码:1631-1650
  • 全文大小:537 KB
  • 参考文献:1. Russell, DW (2003) The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 72: pp. 137-174
    2. Russell, DW, Setchell, KD (1992) Bile acid biosynthesis. Biochemistry 31: pp. 4737-4749
    3. Sayin, SI, Wahlstr枚m, A, Felin, J, J盲ntti, S, Marschall, H, Bamberg, K, Angelin, B, Hy枚tyl盲inen, T, Ore拧i膷, M, B盲ckhed, F (2013) Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 17: pp. 225-235
    4. Kwakye, JB, Barnes, S, Diasio, RB (1993) Identification of bile acid coenzyme a synthetase in rat kidney. J Lipid Res 34: pp. 95-99
    5. Falany, CN, Johnson, MR, Barnes, S, Diasio, RB (1994) Glycine and taurine conjugation of bile acids by a single enzyme. Molecular cloning and expression of human liver bile acid CoA:amino acid N-acyltransferase. J Biol Chem 269: pp. 19375-19379
    6. Solaas, K, Ulvestad, A, S枚reide, O, Kase, BF (2000) Subcellular organization of bile acid amidation in human liver: a key issue in regulating the biosynthesis of bile salts. J Lipid Res 41: pp. 1154-1162
    7. Jansen, PL, Mulder, GJ, Burchell, B, Bock, KW (1992) New developments in glucuronidation research: report of a workshop on 鈥済lucuronidation, its role in health and disease鈥? Hepatology 15: pp. 532-544
    8. Stiehl, A (1977) Disturbances of bile acid metabolism in cholestasis. Clin Gastroenterol 6: pp. 45-67
    9. Yousef, I, Mignault, D, Tuchweber, B (1992) Effect of complete sulfation of bile acids on bile formation: role of conjugation and number of sulfate groups. Hepatology 15: pp. 438-445
    10. Elferink, RPJO, Ottenhoff, R, Fricker, G, Seward, DJ, Ballatori, N, Boyer, J (2004) Lack of biliary lipid excretion in the little skate, Raja erinacea, indicates the absence of functional Mdr2, Abcg5, and Abcg8 transporters. Am J Physiol Gastrointest Liver Physiol 286: pp. G762-G768
    11. Garc铆a-Ca帽averas, JC, Donato, MT, Castell, JV, Lahoz, A (2012) Targeted profiling of circulating and hepatic bile acids in human, mouse, and rat using a UPLC-MRM-MS-validated method. J Lipid Res 53: pp. 2231-2241
    12. Attili, AF, Angelico, M, Cantafora, A, Alvaro, D, Capocaccia, L (1986) Bile acid-induced liver toxicity: relation to the hydrophobic-hydrophilic balance of bile acids. Med Hypotheses 19: pp. 57-69
    13. Swann, JR, Want, EJ, Geier, FM, Spagou, K, Wilson, ID, Sidaway, JE, Nicholson, JK, Holmes, E (2011) Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc Natl Acad Sci USA 108: pp. 4523-4530
    14. Ridlon, JM, Kang, D, Hylemon, PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47: pp. 241-259
    15. Meier, PJ, Stieger, B (2002) Bile salt transporters. Annu Rev Physiol 64: pp. 635-661
    16. Riottot, M, Sacquet, E (1985) Increase in the ileal absorption rate of sodium taurocholate in germ-free or conventional rats given an amylomaize-starch diet. Br J Nutr 53: pp. 307-310
    17. Gustafsson, BE, Bergstrom, S, Lindstedt, S, Norman, A (1957) Turnover and nature of fecal bile acids in germfree and infected rats fed cholic acid-24-14C; bile acids and steroids 41. Proc Soc Exp Biol Med 94: pp. 467-471
    18. Li, F, Jiang, C, Krausz, KW, Li, Y, Albert, I, Hao, H, Fabre, KM, Mitchell, JB, Patterson, AD, Gonzalez, FJ (2013) Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat Commun 4: pp. 2384
    19. Degirolamo, C, Rainaldi, S, Bovenga, F, Murzilli, S, Moschetta, A (2014) Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice. Cell Rep 7: pp. 12-18
    20. Tilg, H, Moschen, AR (2014) Microbiota and diabetes: an evolving relationship. Gut 63: pp. 1513-1521
    21. Vincent, RP, Omar, S, Ghozlan, S, Taylor, DR, Cross, G, Sherwood, RA, Fandriks, L, Olbers, T, Werling, M, Alaghband-Zadeh, J, Roux, CW (2013) Higher circulating bile acid concentrations in obese patients with type 2 diabetes. Ann Clin Biochem 50: pp. 360-364
    22. Wewalka, M, Patti, M, Barbato, C, Houten, SM, Goldfine, AB (2014) Fasting serum taurine-conjugated bile acids are elevated in type 2 diabetes and do not change with intensification of insulin. J Clin Endocrinol Metab 99: pp. 1442-1451
    23. Steiner, C, Othman, A, Saely, CH, Rein, P, Drexel, H, Eckardstein, A, Rentsch, KM (2011) Bile acid metabolites in serum: intraindividual variation and associations with coronary heart disease, metabolic syndrome and diabetes mellitus. PLoS ONE 6: pp. e25006
    24. Joyce, SA, MacSharry, J, Casey, PG, Kinsella, M, Murphy, EF, Shanahan, F, Hill, C, Gahan, CGM (2014) Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc Natl Acad Sci USA 111: pp. 7421-7426
    25. Begley, M, Gahan, CGM, Hill, C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29: pp. 625-651
    26. Trauner, M, Fickert, P, Tilg, H (2013) Bile acids as modulators of gut microbiota linking dietary habits and inflammatory bowel disease: a potentially dangerous liaison. Gastroenterology 144: pp. 844-846
    27. Ridlon, JM, Kang, DJ, Hylemon, PB, Bajaj, JS (2014) Bile acids and the gut microbiome. Curr Opin Gastroenterol 30: pp. 332-338
    28. Heathcote, EJ, Cauch-Dudek, K, Walker, V, Bailey, RJ, Blendis, LM, Ghent, CN, Michieletti, P, Minuk, GY, Pappas, SC, Scully, LJ (1994) The Canadian multicenter double-blind randomized controlled trial of ursodeoxycholic acid in primary biliary cirrhosis. Hepatology 19: pp. 1149-1156
    29. Poupon, RE, Poupon, R, Balkau, B (1994) Ursodiol for the long-term treatment of primary biliary cirrhosis. The UDCA-PBC Study Group. N Engl J Med 330: pp. 1342-1347
    30. Combes, B, Carithers, RLJ, Maddrey, WC, Lin, D, McDonald, MF, Wheeler, DE, Eigenbrodt, EH, Mu帽oz, SJ, Rubin, R, Garcia-Tsao, G (1995) A randomized, double-blind, placebo-controlled trial of ursodeoxycholic acid in primary biliary cirrhosis. Hepatology 22: pp. 759-766
    31. Lindor, KD, Dickson, ER, Jorgensen, RA, Anderson, ML, Wiesner, RH, Gores, GJ, Lange, SM, Rossi, SS, Hofmann, AF, Baldus, WP (1995) The combination of ursodeoxycholic acid and methotrexate for patients with primary biliary cirrhosis: the results of a pilot study. Hepatology 22: pp. 1158-1162
    32. Kuiper, EMM, Hansen, BE, Lesterhuis, W, Robijn, RJ, Thijs, JC, Engels, LGJB, Koek, GH, Aparicio, MN, Kerbert-Dreteler, MJ, Buuren, HR (2011) The long-term effect of ursodeoxycholic acid on laboratory liver parameters in biochemically non-advanced primary biliary cirrhosis. Clin Res Hepatol Gastroenterol 35: pp. 29-33
    33. Glantz, A, Reilly, S, Benthin, L, Lammert, F, Mattsson, L, Marschall, H (2008) Intrahepatic cholestasis of pregnancy: amelioration of pruritus by UDCA is associated with decreased progesterone disulphates in urine. Hepatology 47: pp. 544-551
    34. Jazrawi, RP, Caestecker, JS, Goggin, PM, Britten, AJ, Joseph, AE, Maxwell, JD, Northfield, TC (1994) Kinetics of hepatic bile acid handling in cholestatic liver disease: effect of ursodeoxycholic acid. Gastroenterology 106: pp. 134-142
    35. Combes, B, Markin, RS, Wheeler, DE, Rubin, R, West, AB, Mills, AS, Eigenbrodt, EH, Maddrey, WC, Munoz, SJ, Garcia-Tsao, G, Bonner, GF, Boyer, JL, Luketic, VA, Shiffman, ML, Peters, MG, White, HM, Zetterman, RK, Carithers, RLJ (1999) The effect of ursodeoxycholic acid on the florid duct lesion of primary biliary cirrhosis. Hepatology 30: pp. 602-605
    36. Hofmann, AF, Hagey, LR (2014) Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J Lipid Res 55: pp. 1553-1595
    37. Out, C, Groen, AK, Brufau, G (2012) Bile acid sequestrants: more than simple resins. Curr Opin Lipidol 23: pp. 43-55
    38. Goldberg, RB, Rosenson, RS, Hernandez-Triana, E, Misir, S, Jones, MR (2013) Colesevelam improved lipoprotein particle subclasses in patients with prediabetes and primary hyperlipidaemia. Diab Vasc Dis Res 10: pp. 256-262
    39. Fonseca, VA, Rosenstock, J, Wang, AC, Truitt, KE, Jones, MR (2008) Colesevelam HCl improves glycemic control and reduces LDL cholesterol in patients with inadequately controlled type 2 diabetes on sulfonylurea-based therapy. Diabetes Care 31: pp. 1479-1484
    40. Zieve, FJ, Kalin, MF, Schwartz, SL, Jones, MR, Bailey, WL (2007) Results of the glucose-lowering effect of WelChol Study (GLOWS): a randomized, double-blind, placebo-controlled pilot study evaluating the effect of colesevelam hydrochloride on glycemic control in subjects with type 2 diabetes. Clin Ther 29: pp. 74-83
    41. Goldberg, RB, Fonseca, VA, Truitt, KE, Jones, MR (2008) Efficacy and safety of colesevelam in patients with type 2 diabetes mellitus and inadequate glycemic control receiving insulin-based therapy. Arch Intern Med 168: pp. 1531-1540
    42. Parks, DJ, Blanchard, SG, Bledsoe, RK, Chandra, G, Consler, TG, Kliewer, SA, Stimmel, JB, Willson, TM, Zavacki, AM, Moore, DD, Lehmann, JM (1999) Bile acids: natural ligands for an orphan nuclear receptor. Science 284: pp. 1365-1368
    43. Makishima, M, Okamoto, AY, Repa, JJ, Tu, H, Learned, RM, Luk, A, Hull, MV, Lustig, KD, Mangelsdorf, DJ, Shan, B (1999) Identification of a nuclear receptor for bile acids. Science 284: pp. 1362-1365
    44. Staudinger, JL, Goodwin, B, Jones, SA, Hawkins-Brown, D, MacKenzie, KI, LaTour, A, Liu, Y, Klaassen, CD, Brown, KK, Reinhard, J, Willson, TM, Koller, BH, Kliewer, SA (2001) The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci USA 98: pp. 3369-3374
    45. Makishima, M, Lu, TT, Xie, W, Whitfield, GK, Domoto, H, Evans, RM, Haussler, MR, Mangelsdorf, DJ (2002) Vitamin D receptor as an intestinal bile acid sensor. Science 296: pp. 1313-1316
    46. Kawamata, Y, Fujii, R, Hosoya, M, Harada, M, Yoshida, H, Miwa, M, Fukusumi, S, Habata, Y, Itoh, T, Shintani, Y, Hinuma, S, Fujisawa, Y, Fujino, M (2003) A G protein-coupled receptor responsive to bile acids. J Biol Chem 278: pp. 9435-9440
    47. Stepanov, V, Stankov, K, Mikov, M (2013) The bile acid membrane receptor TGR5: a novel pharmacological target in metabolic, inflammatory and neoplastic disorders. J Recept Signal Transduct Res 33: pp. 213-223
    48. Keitel, V, H盲ussinger, D (2012) Perspective: TGR5 (Gpbar-1) in liver physiology and disease. Clin Res Hepatol Gastroenterol 36: pp. 412-419
    49. Zwart, W, Leeuw, R, Rondaij, M, Neefjes, J, Mancini, MA, Michalides, R (2010) The hinge region of the human estrogen receptor determines functional synergy between AF-1 and AF-2 in the quantitative response to estradiol and tamoxifen. J Cell Sci 123: pp. 1253-1261
    50. Huber, RM, Murphy, K, Miao, B, Link, JR, Cunningham, MR, Rupar, MJ, Gunyuzlu, PL, Haws, TF, Kassam, A, Powell, F, Hollis, GF, Young, PR, Mukherjee, R, Burn, TC (2002) Generation of multiple farnesoid-X-receptor isoforms through the use of alternative promoters. Gene 290: pp. 35-43
    51. Zhang, Y, Kast-Woelbern, HR, Edwards, PA (2003) Natural structural variants of the nuclear receptor farnesoid X receptor affect transcriptional activation. J Biol Chem 278: pp. 104-110
    52. Vaquero, J, Monte, MJ, Dominguez, M, Muntan茅, J, Marin, JJG (2013) Differential activation of the human farnesoid X receptor depends on the pattern of expressed isoforms and the bile acid pool composition. Biochem Pharmacol 86: pp. 926-939
    53. Popescu, IR, Helleboid-Chapman, A, Lucas, A, Vandewalle, B, Dumont, J, Bouchaert, E, Derudas, B, Kerr-Conte, J, Caron, S, Pattou, F, Staels, B (2010) The nuclear receptor FXR is expressed in pancreatic beta-cells and protects human islets from lipotoxicity. FEBS Lett 584: pp. 2845-2851
    54. Anaya-Hern谩ndez, A, M茅ndez-Tepepa, M, Laura, GH, Pacheco, P, Mart铆nez-G贸mez, M, Castel谩n, F, Cuevas, E (2014) Farnesoid X receptor immunolocalization in reproductive tissues of adult female rabbits. Acta Histochem 116: pp. 1068-1074
    55. Bishop-Bailey, D, Walsh, DT, Warner, TD (2004) Expression and activation of the farnesoid X receptor in the vasculature. Proc Natl Acad Sci USA 101: pp. 3668-3673
    56. Lee, FY, Kast-Woelbern, HR, Chang, J, Luo, G, Jones, SA, Fishbein, MC, Edwards, PA (2005) Alpha-crystallin is a target gene of the farnesoid X-activated receptor in human livers. J Biol Chem 280: pp. 31792-31800
    57. Anisfeld, AM, Kast-Woelbern, HR, Meyer, ME, Jones, SA, Zhang, Y, Williams, KJ, Willson, T, Edwards, PA (2003) Syndecan-1 expression is regulated in an isoform-specific manner by the farnesoid-X receptor. J Biol Chem 278: pp. 20420-20428
    58. Anisfeld, AM, Kast-Woelbern, HR, Lee, H, Zhang, Y, Lee, FY, Edwards, PA (2005) Activation of the nuclear receptor FXR induces fibrinogen expression: a new role for bile acid signaling. J Lipid Res 46: pp. 458-468
    59. Song, X, Chen, Y, Valanejad, L, Kaimal, R, Yan, B, Stoner, M, Deng, R (2013) Mechanistic insights into isoform-dependent and species-specific regulation of bile salt export pump by farnesoid X receptor. J Lipid Res 54: pp. 3030-3044
    60. Sinal, CJ, Tohkin, M, Miyata, M, Ward, JM, Lambert, G, Gonzalez, FJ (2000) Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102: pp. 731-744
    61. Prawitt, J, Abdelkarim, M, Stroeve, JHM, Popescu, I, Duez, H, Velagapudi, VR, Dumont, J, Bouchaert, E, Dijk, TH, Lucas, A, Dorchies, E, Daoudi, M, Lestavel, S, Gonzalez, FJ, Oresic, M, Cariou, B, Kuipers, F, Caron, S, Staels, B (2011) Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes 60: pp. 1861-1871
    62. Lambert, G, Amar, MJA, Guo, G, Brewer, HBJ, Gonzalez, FJ, Sinal, CJ (2003) The farnesoid X-receptor is an essential regulator of cholesterol homeostasis. J Biol Chem 278: pp. 2563-2570
    63. Hanniman, EA, Lambert, G, McCarthy, TC, Sinal, CJ (2005) Loss of functional farnesoid X receptor increases atherosclerotic lesions in apolipoprotein e-deficient mice. J Lipid Res 46: pp. 2595-2604
    64. Zhang, Y, Wang, X, Vales, C, Lee, FY, Lee, H, Lusis, AJ, Edwards, PA (2006) FXR deficiency causes reduced atherosclerosis in Ldlr鈭?鈭?mice. Arterioscler Thromb Vasc Biol 26: pp. 2316-2321
    65. Kong, B, Luyendyk, JP, Tawfik, O, Guo, GL (2009) Farnesoid X receptor deficiency induces nonalcoholic steatohepatitis in low-density lipoprotein receptor-knockout mice fed a high-fat diet. J Pharmacol Exp Ther 328: pp. 116-122
    66. Cariou, B, Harmelen, K, Duran-Sandoval, D, Dijk, TH, Grefhorst, A, Abdelkarim, M, Caron, S, Torpier, G, Fruchart, J, Gonzalez, FJ, Kuipers, F, Staels, B (2006) The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J Biol Chem 281: pp. 11039-11049
    67. Ma, K, Saha, PK, Chan, L, Moore, DD (2006) Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest 116: pp. 1102-1109
    68. Zhang, Y, Lee, FY, Barrera, G, Lee, H, Vales, C, Gonzalez, FJ, Willson, TM, Edwards, PA (2006) Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci USA 103: pp. 1006-1011
    69. Zhang, Y, Ge, X, Heemstra, LA, Chen, W, Xu, J, Smith, JL, Ma, H, Kasim, N, Edwards, PA, Novak, CM (2012) Loss of FXR protects against diet-induced obesity and accelerates liver carcinogenesis in Ob/Ob mice. Mol Endocrinol 26: pp. 272-280
    70. Yang, F, Huang, X, Yi, T, Yen, Y, Moore, DD, Huang, W (2007) Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptor. Cancer Res 67: pp. 863-867
    71. Wolfe, A, Thomas, A, Edwards, G, Jaseja, R, Guo, GL, Apte, U (2011) Increased activation of the Wnt/螔-catenin pathway in spontaneous hepatocellular carcinoma observed in farnesoid X receptor knockout mice. J Pharmacol Exp Ther 338: pp. 12-21
    72. Liu, N, Meng, Z, Lou, G, Zhou, W, Wang, X, Zhang, Y, Zhang, L, Liu, X, Yen, Y, Lai, L, Forman, BM, Xu, Z, Xu, R, Huang, W (2012) Hepatocarcinogenesis in FXR鈭?鈭?mice mimics human HCC progression that operates through HNF1伪 regulation of FXR expression. Mol Endocrinol 26: pp. 775-785
    73. Huang, W, Ma, K, Zhang, J, Qatanani, M, Cuvillier, J, Liu, J, Dong, B, Huang, X, Moore, DD (2006) Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration. Science 312: pp. 233-236
    74. Meng, Z, Wang, Y, Wang, L, Jin, W, Liu, N, Pan, H, Liu, L, Wagman, L, Forman, BM, Huang, W (2010) FXR regulates liver repair after CCl4-induced toxic injury. Mol Endocrinol 24: pp. 886-897
    75. Maran, RRM, Thomas, A, Roth, M, Sheng, Z, Esterly, N, Pinson, D, Gao, X, Zhang, Y, Ganapathy, V, Gonzalez, FJ, Guo, GL (2009) Farnesoid X receptor deficiency in mice leads to increased intestinal epithelial cell proliferation and tumor development. J Pharmacol Exp Ther 328: pp. 469-477
    76. Kok, T, Hulzebos, CV, Wolters, H, Havinga, R, Agellon, LB, Stellaard, F, Shan, B, Schwarz, M, Kuipers, F (2003) Enterohepatic circulation of bile salts in farnesoid X receptor-deficient mice: efficient intestinal bile salt absorption in the absence of ileal bile acid-binding protein. J Biol Chem 278: pp. 41930-41937
    77. Dijk, TH, Grefhorst, A, Oosterveer, MH, Bloks, VW, Staels, B, Reijngoud, D, Kuipers, F (2009) An increased flux through the glucose 6-phosphate pool in enterocytes delays glucose absorption in Fxr鈭?鈭?mice. J Biol Chem 284: pp. 10315-10323
    78. Bjursell, M, Wedin, M, Admyre, T, Hermansson, M, B枚ttcher, G, G枚ransson, M, Lind茅n, D, Bamberg, K, Oscarsson, J, Bohlooly-Y, M (2013) Ageing Fxr deficient mice develop increased energy expenditure, improved glucose control and liver damage resembling NASH. PLoS ONE 8: pp. e64721
    79. Li, G, Thomas, AM, Hart, SN, Zhong, X, Wu, D, Guo, GL (2010) Farnesoid X receptor activation mediates head-to-tail chromatin looping in the Nr0b2 gene encoding small heterodimer partner. Mol Endocrinol 24: pp. 1404-1412
    80. Lu, TT, Makishima, M, Repa, JJ, Schoonjans, K, Kerr, TA, Auwerx, J, Mangelsdorf, DJ (2000) Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 6: pp. 507-515
    81. Goodwin, B, Jones, SA, Price, RR, Watson, MA, McKee, DD, Moore, LB, Galardi, C, Wilson, JG, Lewis, MC, Roth, ME, Maloney, PR, Willson, TM, Kliewer, SA (2000) A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 6: pp. 517-526
    82. Sanyal, S, B氓vner, A, Haroniti, A, Nilsson, L, Lund氓sen, T, Rehnmark, S, Witt, MR, Einarsson, C, Talianidis, I, Gustafsson, J, Treuter, E (2007) Involvement of corepressor complex subunit GPS2 in transcriptional pathways governing human bile acid biosynthesis. Proc Natl Acad Sci USA 104: pp. 15665-15670
    83. Abrahamsson, A, Gustafsson, U, Ellis, E, Nilsson, L, Sahlin, S, Bj枚rkhem, I, Einarsson, C (2005) Feedback regulation of bile acid synthesis in human liver: importance of HNF-4alpha for regulation of CYP7A1. Biochem Biophys Res Commun 330: pp. 395-399
    84. Ellis, E, Axelson, M, Abrahamsson, A, Eggertsen, G, Th枚rne, A, Nowak, G, Ericzon, B, Bj枚rkhem, I, Einarsson, C (2003) Feedback regulation of bile acid synthesis in primary human hepatocytes: evidence that CDCA is the strongest inhibitor. Hepatology 38: pp. 930-938
    85. Liu J, Lu H, Lu Y, Lei X, Cui JY, Ellis E, Strom SC, Klaassen CD (2014) Potency of individual bile acids to regulate bile acid synthesis and transport genes in primary human hepatocyte cultures. Toxicol Sci
    86. Pandak, WM, Bohdan, P, Franklund, C, Mallonee, DH, Eggertsen, G, Bj枚rkhem, I, Gil, G, Vlahcevic, ZR, Hylemon, PB (2001) Expression of sterol 12alpha-hydroxylase alters bile acid pool composition in primary rat hepatocytes and in vivo. Gastroenterology 120: pp. 1801-1809
    87. Zollner, G, Wagner, M, Fickert, P, Geier, A, Fuchsbichler, A, Silbert, D, Gumhold, J, Zatloukal, K, Kaser, A, Tilg, H, Denk, H, Trauner, M (2005) Role of nuclear receptors and hepatocyte-enriched transcription factors for Ntcp repression in biliary obstruction in mouse liver. Am J Physiol Gastrointest Liver Physiol 289: pp. G798-G805
    88. Maeda, T, Miyata, M, Yotsumoto, T, Kobayashi, D, Nozawa, T, Toyama, K, Gonzalez, FJ, Yamazoe, Y, Tamai, I (2004) Regulation of drug transporters by the farnesoid X receptor in mice. Mol Pharm 1: pp. 281-289
    89. Plass, JRM, Mol, O, Heegsma, J, Geuken, M, Faber, KN, Jansen, PLM, M眉ller, M (2002) Farnesoid X receptor and bile salts are involved in transcriptional regulation of the gene encoding the human bile salt export pump. Hepatology 35: pp. 589-596
    90. Lee, FY, Aguiar Vallim, TQ, Chong, HK, Zhang, Y, Liu, Y, Jones, SA, Osborne, TF, Edwards, PA (2010) Activation of the farnesoid X receptor provides protection against acetaminophen-induced hepatic toxicity. Mol Endocrinol 24: pp. 1626-1636
    91. Song, K, Li, T, Owsley, E, Strom, S, Chiang, JYL (2009) Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression. Hepatology 49: pp. 297-305
    92. Zhan, L, Liu, H, Fang, Y, Kong, B, He, Y, Zhong, X, Fang, J, Wan, YY, Guo, GL (2014) Genome-wide binding and transcriptome analysis of human farnesoid X receptor in primary human hepatocytes. PLoS ONE 9: pp. e105930
    93. Zhou, W, Feng, X, Wu, Y, Benge, J, Zhang, Z, Chen, Z (2009) FGF-receptor substrate 2 functions as a molecular sensor integrating external regulatory signals into the FGF pathway. Cell Res 19: pp. 1165-1177
    94. Kong, B, Wang, L, Chiang, JYL, Zhang, Y, Klaassen, CD, Guo, GL (2012) Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice. Hepatology 56: pp. 1034-1043
    95. Modica, S, Petruzzelli, M, Bellafante, E, Murzilli, S, Salvatore, L, Celli, N, Tullio, G, Palasciano, G, Moustafa, T, Halilbasic, E, Trauner, M, Moschetta, A (2012) Selective activation of nuclear bile acid receptor FXR in the intestine protects mice against cholestasis. Gastroenterology 142: pp. 355-365
    96. Stroeve, JHM, Brufau, G, Stellaard, F, Gonzalez, FJ, Staels, B, Kuipers, F (2010) Intestinal FXR-mediated FGF15 production contributes to diurnal control of hepatic bile acid synthesis in mice. Lab Invest 90: pp. 1457-1467
    97. Inagaki, T, Choi, M, Moschetta, A, Peng, L, Cummins, CL, McDonald, JG, Luo, G, Jones, SA, Goodwin, B, Richardson, JA, Gerard, RD, Repa, JJ, Mangelsdorf, DJ, Kliewer, SA (2005) Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2: pp. 217-225
    98. Li, S, Hsu, DDF, Li, B, Luo, X, Alderson, N, Qiao, L, Ma, L, Zhu, HH, He, Z, Suino-Powell, K, Ji, K, Li, J, Shao, J, Xu, HE, Li, T, Feng, G (2014) Cytoplasmic tyrosine phosphatase Shp2 coordinates hepatic regulation of bile acid and FGF15/19 signaling to repress bile acid synthesis. Cell Metab 20: pp. 320-332
    99. Kir, S, Zhang, Y, Gerard, RD, Kliewer, SA, Mangelsdorf, DJ (2012) Nuclear receptors HNF4伪 and LRH-1 cooperate in regulating Cyp7a1 in vivo. J Biol Chem 287: pp. 41334-41341
    100. Chen, F, Ma, L, Dawson, PA, Sinal, CJ, Sehayek, E, Gonzalez, FJ, Breslow, J, Ananthanarayanan, M, Shneider, BL (2003) Liver receptor homologue-1 mediates species- and cell line-specific bile acid-dependent negative feedback regulation of the apical sodium-dependent bile acid transporter. J Biol Chem 278: pp. 19909-19916
    101. Hwang, ST, Urizar, NL, Moore, DD, Henning, SJ (2002) Bile acids regulate the ontogenic expression of ileal bile acid binding protein in the rat via the farnesoid X receptor. Gastroenterology 122: pp. 1483-1492
    102. Boyer, JL, Trauner, M, Mennone, A, Soroka, CJ, Cai, S, Moustafa, T, Zollner, G, Lee, JY, Ballatori, N (2006) Upregulation of a basolateral FXR-dependent bile acid efflux transporter OSTalpha-OSTbeta in cholestasis in humans and rodents. Am J Physiol Gastrointest Liver Physiol 290: pp. G1124-G1130
    103. Cui, YJ, Aleksunes, LM, Tanaka, Y, Goedken, MJ, Klaassen, CD (2009) Compensatory induction of liver efflux transporters in response to ANIT-induced liver injury is impaired in FXR-null mice. Toxicol Sci 110: pp. 47-60
    104. Fiorucci, S, Clerici, C, Antonelli, E, Orlandi, S, Goodwin, B, Sadeghpour, BM, Sabatino, G, Russo, G, Castellani, D, Willson, TM, Pruzanski, M, Pellicciari, R, Morelli, A (2005) Protective effects of 6-ethyl chenodeoxycholic acid, a farnesoid X receptor ligand, in estrogen-induced cholestasis. J Pharmacol Exp Ther 313: pp. 604-612
    105. Liu, Y, Binz, J, Numerick, MJ, Dennis, S, Luo, G, Desai, B, MacKenzie, KI, Mansfield, TA, Kliewer, SA, Goodwin, B, Jones, SA (2003) Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra- and extrahepatic cholestasis. J Clin Invest 112: pp. 1678-1687
    106. Fiorucci, S, Antonelli, E, Rizzo, G, Renga, B, Mencarelli, A, Riccardi, L, Orlandi, S, Pellicciari, R, Morelli, A (2004) The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis. Gastroenterology 127: pp. 1497-1512
    107. Stedman, C, Liddle, C, Coulter, S, Sonoda, J, Alvarez, JG, Evans, RM, Downes, M (2006) Benefit of farnesoid X receptor inhibition in obstructive cholestasis. Proc Natl Acad Sci USA 103: pp. 11323-11328
    108. Marschall, H, Wagner, M, Bodin, K, Zollner, G, Fickert, P, Gumhold, J, Silbert, D, Fuchsbichler, A, Sj枚vall, J, Trauner, M (2006) Fxr(鈭?鈭? mice adapt to biliary obstruction by enhanced phase I detoxification and renal elimination of bile acids. J Lipid Res 47: pp. 582-592
    109. Wagner, M, Fickert, P, Zollner, G, Fuchsbichler, A, Silbert, D, Tsybrovskyy, O, Zatloukal, K, Guo, GL, Schuetz, JD, Gonzalez, FJ, Marschall, H, Denk, H, Trauner, M (2003) Role of farnesoid X receptor in determining hepatic ABC transporter expression and liver injury in bile duct-ligated mice. Gastroenterology 125: pp. 825-838
    110. Kazgan, N, Metukuri, MR, Purushotham, A, Lu, J, Rao, A, Lee, S, Pratt-Hyatt, M, Lickteig, A, Csanaky, IL, Zhao, Y, Dawson, PA, Li, X (2014) Intestine-specific deletion of SIRT1 in mice impairs DCoH2-HNF-1伪-FXR signaling and alters systemic bile acid homeostasis. Gastroenterology 146: pp. 1006-1016
    111. Lefebvre, P, Staels, B (2014) DCo(H2)Ding the Metabolic Functions of SIRT1 in the Intestine. Gastroenterology 146: pp. 893-896
    112. Alvarez, L, Jara, P, S谩nchez-Sabat茅, E, Hierro, L, Larrauri, J, D铆az, MC, Camarena, C, Vega, A, Frauca, E, L贸pez-Collazo, E, Lapunzina, P (2004) Reduced hepatic expression of farnesoid X receptor in hereditary cholestasis associated to mutation in ATP8B1. Hum Mol Genet 13: pp. 2451-2460
    113. Chen, F, Ananthanarayanan, M, Emre, S, Neimark, E, Bull, LN, Knisely, AS, Strautnieks, SS, Thompson, RJ, Magid, MS, Gordon, R, Balasubramanian, N, Suchy, FJ, Shneider, BL (2004) Progressive familial intrahepatic cholestasis, type 1, is associated with decreased farnesoid X receptor activity. Gastroenterology 126: pp. 756-764
    114. Zimmer, V, M眉llenbach, R, Simon, E, Bartz, C, Matern, S, Lammert, F (2009) Combined functional variants of hepatobiliary transporters and FXR aggravate intrahepatic cholestasis of pregnancy. Liver Int 29: pp. 1286-1288
    115. Langhi, C, May, C, Kourimate, S, Caron, S, Staels, B, Krempf, M, Costet, P, Cariou, B (2008) Activation of the farnesoid X receptor represses PCSK9 expression in human hepatocytes. FEBS Lett 582: pp. 949-955
    116. Wang, Y, Jones, PJH, Woollett, LA, Buckley, DD, Yao, L, Granholm, NA, Tolley, EA, Heubi, JE (2006) Effects of chenodeoxycholic acid and deoxycholic acid on cholesterol absorption and metabolism in humans. Transl Res 148: pp. 37-45
    117. P茅rez-Aguilar, F, Bret贸, M, Alegre, B, Berenguer, J (1985) Increase in serum total cholesterol and low-density lipoprotein cholesterol by high-dose chenodeoxycholic acid in patients with radiolucent gallstones significantly reversed during preventive low dose after gallstone dissolution. Digestion 31: pp. 225-233
    118. Mudaliar, S, Henry, RR, Sanyal, AJ, Morrow, L, Marschall, H, Kipnes, M, Adorini, L, Sciacca, CI, Clopton, P, Castelloe, E, Dillon, P, Pruzanski, M, Shapiro, D (2013) Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology 145: pp. 574-582
    119. Gautier, T, Haan, W, Grober, J, Ye, D, Bahr, MJ, Claudel, T, Nijstad, N, Berkel, TJC, Havekes, LM, Manns, MP, Willems, SM, Hogendoorn, PCW, Lagrost, L, Kuipers, F, Eck, M, Rensen, PCN, Tietge, UJF (2013) Farnesoid X receptor activation increases cholesteryl ester transfer protein expression in humans and transgenic mice. J Lipid Res 54: pp. 2195-2205
    120. Urizar, NL, Dowhan, DH, Moore, DD (2000) The farnesoid X-activated receptor mediates bile acid activation of phospholipid transfer protein gene expression. J Biol Chem 275: pp. 39313-39317
    121. Sirvent, A, Verhoeven, AJM, Jansen, H, Kosykh, V, Darteil, RJ, Hum, DW, Fruchart, J, Staels, B (2004) Farnesoid X receptor represses hepatic lipase gene expression. J Lipid Res 45: pp. 2110-2115
    122. Leiss, O, Bergmann, K (1982) Different effects of chenodeoxycholic acid and ursodeoxycholic acid on serum lipoprotein concentrations in patients with radiolucent gallstones. Scand J Gastroenterol 17: pp. 587-592
    123. Hambruch, E, Miyazaki-Anzai, S, Hahn, U, Matysik, S, Boettcher, A, Perovi膰-Ottstadt, S, Schl眉ter, T, Kinzel, O, Krol, HD, Deuschle, U, Burnet, M, Levi, M, Schmitz, G, Miyazaki, M, Kremoser, C (2012) Synthetic farnesoid X receptor agonists induce high-density lipoprotein-mediated transhepatic cholesterol efflux in mice and monkeys and prevent atherosclerosis in cholesteryl ester transfer protein transgenic low-density lipoprotein receptor (鈭?鈭? mice. J Pharmacol Exp Ther 343: pp. 556-567
    124. Watanabe, M, Houten, SM, Wang, L, Moschetta, A, Mangelsdorf, DJ, Heyman, RA, Moore, DD, Auwerx, J (2004) Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest 113: pp. 1408-1418
    125. Hirokane, H, Nakahara, M, Tachibana, S, Shimizu, M, Sato, R (2004) Bile acid reduces the secretion of very low density lipoprotein by repressing microsomal triglyceride transfer protein gene expression mediated by hepatocyte nuclear factor-4. J Biol Chem 279: pp. 45685-45692
    126. Cipriani, S, Mencarelli, A, Palladino, G, Fiorucci, S (2010) FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in zucker (Fa/Fa) obese rats. J Lipid Res 51: pp. 771-784
    127. Schmitt J, Kong B, Stieger B, Tschopp O, Schultze SM, Rau M, Weber A, M眉llhaupt B, Guo GL,Geier A (2014) Protective effects of farnesoid X receptor (FXR) on hepatic lipid accumulation are mediated by hepatic FXR and independent of intestinal FGF15 signal. Liver Int
    128. Zhang, S, Wang, J, Liu, Q, Harnish, DC (2009) Farnesoid X receptor agonist WAY-362450 attenuates liver inflammation and fibrosis in murine model of non-alcoholic steatohepatitis. J Hepatol 51: pp. 380-388
    129. Porez, G, Gross, B, Prawitt, J, Gheeraert, C, Berrabah, W, Alexandre, J, Staels, B, Lefebvre, P (2013) The hepatic orosomucoid/螒1-acid glycoprotein gene cluster is regulated by the nuclear bile acid receptor FXR. Endocrinology 154: pp. 3690-3701
    130. Duran-Sandoval, D, Mautino, G, Martin, G, Percevault, F, Barbier, O, Fruchart, J, Kuipers, F, Staels, B (2004) Glucose regulates the expression of the farnesoid X receptor in liver. Diabetes 53: pp. 890-898
    131. Watanabe, M, Horai, Y, Houten, SM, Morimoto, K, Sugizaki, T, Arita, E, Mataki, C, Sato, H, Tanigawara, Y, Schoonjans, K, Itoh, H, Auwerx, J (2011) Lowering bile acid pool size with a synthetic farnesoid X receptor (FXR) agonist induces obesity and diabetes through reduced energy expenditure. J Biol Chem 286: pp. 26913-26920
    132. Duran-Sandoval, D, Cariou, B, Percevault, F, Hennuyer, N, Grefhorst, A, Dijk, TH, Gonzalez, FJ, Fruchart, J, Kuipers, F, Staels, B (2005) The farnesoid X receptor modulates hepatic carbohydrate metabolism during the fasting-refeeding transition. J Biol Chem 280: pp. 29971-29979
    133. Caron, S, Huaman Samanez, C, Dehondt, H, Ploton, M, Briand, O, Lien, F, Dorchies, E, Dumont, J, Postic, C, Cariou, B, Lefebvre, P, Staels, B (2013) Farnesoid X receptor inhibits the transcriptional activity of carbohydrate response element binding protein in human hepatocytes. Mol Cell Biol 33: pp. 2202-2211
    134. Renga, B, Mencarelli, A, D鈥橝more, C, Cipriani, S, Baldelli, F, Zampella, A, Distrutti, E, Fiorucci, S (2012) Glucocorticoid receptor mediates the gluconeogenic activity of the farnesoid X receptor in the fasting condition. FASEB J 26: pp. 3021-3031
    135. Seyer, P, Vallois, D, Poitry-Yamate, C, Sch眉tz, F, Metref, S, Tarussio, D, Maechler, P, Staels, B, Lanz, B, Grueter, R, Decaris, J, Turner, S, Costa, A, Preitner, F, Minehira, K, Foretz, M, Thorens, B (2013) Hepatic glucose sensing is required to preserve 尾 cell glucose competence. J Clin Invest 123: pp. 1662-1676
    136. D眉fer, M, H枚rth, K, Wagner, R, Schittenhelm, B, Prowald, S, Wagner, TFJ, Oberwinkler, J, Lukowski, R, Gonzalez, FJ, Krippeit-Drews, P, Drews, G (2012) Bile acids acutely stimulate insulin secretion of mouse 螔-cells via farnesoid X receptor activation and K(ATP) channel inhibition. Diabetes 61: pp. 1479-1489
    137. Renga, B, Mencarelli, A, Vavassori, P, Brancaleone, V, Fiorucci, S (2010) The bile acid sensor FXR regulates insulin transcription and secretion. Biochim Biophys Acta 1802: pp. 363-372
    138. Kim, I, Morimura, K, Shah, Y, Yang, Q, Ward, JM, Gonzalez, FJ (2007) Spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice. Carcinogenesis 28: pp. 940-946
    139. Li, G, Kong, B, Zhu, Y, Zhan, L, Williams, JA, Tawfik, O, Kassel, KM, Luyendyk, JP, Wang, L, Guo, GL (2013) Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor knockout mice. Toxicol Appl Pharmacol 272: pp. 299-305
    140. Li, G, Zhu, Y, Tawfik, O, Kong, B, Williams, JA, Zhan, L, Kassel, KM, Luyendyk, JP, Wang, L, Guo, GL (2013) Mechanisms of STAT3 activation in the liver of FXR knockout mice. Am J Physiol Gastrointest Liver Physiol 305: pp. G829-G837
    141. Xu, Z, Huang, G, Gong, W, Zhou, P, Zhao, Y, Zhang, Y, Zeng, Y, Gao, M, Pan, Z, He, F (2012) FXR ligands protect against hepatocellular inflammation via SOCS3 induction. Cell Signal 24: pp. 1658-1664
    142. Deuschle, U, Sch眉ler, J, Schulz, A, Schl眉ter, T, Kinzel, O, Abel, U, Kremoser, C (2012) FXR controls the tumor suppressor NDRG2 and FXR agonists reduce liver tumor growth and metastasis in an orthotopic mouse xenograft model. PLoS ONE 7: pp. e43044
    143. Ohno, T, Shirakami, Y, Shimizu, M, Kubota, M, Sakai, H, Yasuda, Y, Kochi, T, Tsurumi, H, Moriwaki, H (2012) Synergistic growth inhibition of human hepatocellular carcinoma cells by acyclic retinoid and GW4064, a farnesoid X receptor ligand. Cancer Lett 323: pp. 215-222
    144. Su, H, Ma, C, Liu, J, Li, N, Gao, M, Huang, A, Wang, X, Huang, W, Huang, X (2012) Downregulation of nuclear receptor FXR is associated with multiple malignant clinicopathological characteristics in human hepatocellular carcinoma. Am J Physiol Gastrointest Liver Physiol 303: pp. G1245-G1253
    145. Vaquero, J, Briz, O, Herraez, E, Muntan茅, J, Marin, JJG (2013) Activation of the nuclear receptor FXR enhances hepatocyte chemoprotection and liver tumor chemoresistance against genotoxic compounds. Biochim Biophys Acta 1833: pp. 2212-2219
    146. Herraez, E, Gonzalez-Sanchez, E, Vaquero, J, Romero, MR, Serrano, MA, Marin, JJG, Briz, O (2012) Cisplatin-induced chemoresistance in colon cancer cells involves FXR-dependent and FXR-independent up-regulation of ABC proteins. Mol Pharm 9: pp. 2565-2576
    147. Degirolamo C, Modica S, Vacca M, Di Tullio G, Morgano A, D鈥橭razio A, Kannisto K, Parini P,Moschetta A (2014) Prevention of spontaneous hepatocarcinogenesis in FXR null mice by intestinal specific FXR re-activation. Hepatology
    148. Zhou, M, Wang, X, Phung, V, Lindhout, DA, Mondal, K, Hsu, J, Yang, H, Humphrey, M, Ding, X, Arora, T, Learned, RM, DePaoli, AM, Tian, H, Ling, L (2014) Separating tumorigenicity from bile acid regulatory activity for endocrine hormone FGF19. Cancer Res 74: pp. 3306-3316
    149. Luo, J, Ko, B, Elliott, M, Zhou, M, Lindhout, DA, Phung, V, To, C, Learned, RM, Tian, H, DePaoli, AM, Ling, L (2014) A nontumorigenic variant of FGF19 treats cholestatic liver diseases. Sci Transl Med 6: pp. 247ra100
    150. Gottardi, A, Touri, F, Maurer, CA, Perez, A, Maurhofer, O, Ventre, G, Bentzen, CL, Niesor, EJ, Dufour, J (2004) The bile acid nuclear receptor FXR and the bile acid binding protein IBABP are differently expressed in colon cancer. Dig Dis Sci 49: pp. 982-989
    151. Lax, S, Schauer, G, Prein, K, Kapitan, M, Silbert, D, Berghold, A, Berger, A, Trauner, M (2012) Expression of the nuclear bile acid receptor/farnesoid X receptor is reduced in human colon carcinoma compared to nonneoplastic mucosa independent from site and may be associated with adverse prognosis. Int J Cancer 130: pp. 2232-2239
    152. Stojancevic, M, Stankov, K, Mikov, M (2012) The impact of farnesoid X receptor activation on intestinal permeability in inflammatory bowel disease. Can J Gastroenterol 26: pp. 631-637
    153. Inagaki, T, Moschetta, A, Lee, Y, Peng, L, Zhao, G, Downes, M, Yu, RT, Shelton, JM, Richardson, JA, Repa, JJ, Mangelsdorf, DJ, Kliewer, SA (2006) Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci USA 103: pp. 3920-3925
    154. Modica, S, Murzilli, S, Salvatore, L, Schmidt, DR, Moschetta, A (2008) Nuclear bile acid receptor FXR protects against intestinal tumorigenesis. Cancer Res 68: pp. 9589-9594
    155. Xu, Y, Watanabe, T, Tanigawa, T, Machida, H, Okazaki, H, Yamagami, H, Watanabe, K, Tominaga, K, Fujiwara, Y, Oshitani, N, Arakawa, T (2010) Bile acids induce Cdx2 expression through the farnesoid X receptor in gastric epithelial cells. J Clin Biochem Nutr 46: pp. 81-86
    156. Chen, W, Wang, Y, Zhang, L, Shiah, S, Wang, M, Yang, F, Yu, D, Forman, BM, Huang, W (2010) Farnesoid X receptor alleviates age-related proliferation defects in regenerating mouse livers by activating Forkhead box M1b transcription. Hepatology 51: pp. 953-962
    157. Garc铆a-Rodr铆guez, JL, Barbier-Torres, L, Fern谩ndez-脕lvarez, S, Guti茅rrez-de Juan, V, Monte, MJ, Halilbasic, E, Herranz, D, 脕lvarez, L, Aspichueta, P, Mar铆n, JJG, Trauner, M, Mato, JM, Serrano, M, Beraza, N, Mart铆nez-Chantar, ML (2014) SIRT1 controls liver regeneration by regulating bile acid metabolism through farnesoid X receptor and mammalian target of rapamycin signaling. Hepatology 59: pp. 1972-1983
    158. Zhang, L, Wang, Y, Chen, W, Wang, X, Lou, G, Liu, N, Lin, M, Forman, BM, Huang, W (2012) Promotion of liver regeneration/repair by farnesoid X receptor in both liver and intestine in mice. Hepatology 56: pp. 2336-2343
    159. Seol, W, Choi, HS, Moore, DD (1995) Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan receptors. Mol Endocrinol 9: pp. 72-85
    160. Chong, HK, Infante, AM, Seo, Y, Jeon, T, Zhang, Y, Edwards, PA, Xie, X, Osborne, TF (2010) Genome-wide interrogation of hepatic FXR reveals an asymmetric IR-1 motif and synergy with LRH-1. Nucleic Acids Res 38: pp. 6007-6017
    161. Thomas, AM, Hart, SN, Kong, B, Fang, J, Zhong, X, Guo, GL (2010) Genome-wide tissue-specific farnesoid X receptor binding in mouse liver and intestine. Hepatology 51: pp. 1410-1419
    162. Berrabah, W, Aumercier, P, Gheeraert, C, Dehondt, H, Bouchaert, E, Alexandre, J, Ploton, M, Mazuy, C, Caron, S, Tailleux, A, Eeckhoute, J, Lefebvre, T, Staels, B, Lefebvre, P (2014) Glucose sensing O-GlcNAcylation pathway regulates the nuclear bile acid receptor farnesoid X receptor (FXR). Hepatology 59: pp. 2022-2033
    163. Song, CS, Echchgadda, I, Baek, BS, Ahn, SC, Oh, T, Roy, AK, Chatterjee, B (2001) Dehydroepiandrosterone sulfotransferase gene induction by bile acid activated farnesoid X receptor. J Biol Chem 276: pp. 42549-42556
    164. Kast, HR, Goodwin, B, Tarr, PT, Jones, SA, Anisfeld, AM, Stoltz, CM, Tontonoz, P, Kliewer, S, Willson, TM, Edwards, PA (2002) Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem 277: pp. 2908-2915
    165. Laffitte, BA, Kast, HR, Nguyen, CM, Zavacki, AM, Moore, DD, Edwards, PA (2000) Identification of the DNA binding specificity and potential target genes for the farnesoid X-activated receptor. J Biol Chem 275: pp. 10638-10647
    166. Claudel, T, Inoue, Y, Barbier, O, Duran-Sandoval, D, Kosykh, V, Fruchart, J, Fruchart, J, Gonzalez, FJ, Staels, B (2003) Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression. Gastroenterology 125: pp. 544-555
    167. Mi, L, Devarakonda, S, Harp, JM, Han, Q, Pellicciari, R, Willson, TM, Khorasanizadeh, S, Rastinejad, F (2003) Structural basis for bile acid binding and activation of the nuclear receptor FXR. Mol Cell 11: pp. 1093-1100
    168. Kullak-Ublick, GA, Beuers, U, Paumgartner, G (1996) Molecular and functional characterization of bile acid transport in human hepatoblastoma HepG2 cells. Hepatology 23: pp. 1053-1060
    169. Porez, G, Prawitt, J, Gross, B, Staels, B (2012) Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease. J Lipid Res 53: pp. 1723-1737
    170. Downes, M, Verdecia, MA, Roecker, AJ, Hughes, R, Hogenesch, JB, Kast-Woelbern, HR, Bowman, ME, Ferrer, J, Anisfeld, AM, Edwards, PA, Rosenfeld, JM, Alvarez, JGA, Noel, JP, Nicolaou, KC, Evans, RM (2003) A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol Cell 11: pp. 1079-1092
    171. Dwivedi, SKD, Singh, N, Kumari, R, Mishra, JS, Tripathi, S, Banerjee, P, Shah, P, Kukshal, V, Tyagi, AM, Gaikwad, AN, Chaturvedi, RK, Mishra, DP, Trivedi, AK, Sanyal, S, Chattopadhyay, N, Ramachandran, R, Siddiqi, MI, Bandyopadhyay, A, Arora, A, Lund氓sen, T, Anakk, SP, Moore, DD, Sanyal, S (2011) Bile acid receptor agonist GW4064 regulates PPAR纬 coactivator-1伪 expression through estrogen receptor-related receptor 螒. Mol Endocrinol 25: pp. 922-932
    172. Cui, J, Huang, L, Zhao, A, Lew, J, Yu, J, Sahoo, S, Meinke, PT, Royo, I, Pelaez, F, Wright, SD (2003) Guggulsterone is a farnesoid X receptor antagonist in coactivator association assays but acts to enhance transcription of bile salt export pump. J Biol Chem 278: pp. 10214-10220
    173. Modica, S, Gadaleta, RM, Moschetta, A (2010) Deciphering the nuclear bile acid receptor FXR paradigm. Nucl Recept Signal 8: pp. e005
    174. Liu, P, Xu, X, Chen, L, Ma, L, Shen, X, Hu, L (2014) Discovery and SAR study of hydroxyacetophenone derivatives as potent, non-steroidal farnesoid X receptor (FXR) antagonists. Bioorg Med Chem 22: pp. 1596-1607
    175. Xu, X, Lu, Y, Chen, L, Chen, J, Luo, X, Shen, X (2013) Identification of 15d-PGJ2 as an antagonist of farnesoid X receptor: molecular modeling with biological evaluation. Steroids 78: pp. 813-822
    176. Yu, DD, Lin, W, Chen, T, Forman, BM (2013) Development of time resolved fluorescence resonance energy transfer-based assay for FXR antagonist discovery. Bioorg Med Chem 21: pp. 4266-4278
    177. Leva, FS, Festa, C, D鈥橝more, C, Marino, S, Renga, B, D鈥橝uria, MV, Novellino, E, Limongelli, V, Zampella, A, Fiorucci, S (2013) Binding mechanism of the farnesoid X receptor marine antagonist suvanine reveals a strategy to forestall drug modulation on nuclear receptors. Design, synthesis, and biological evaluation of novel ligands. J Med Chem 56: pp. 4701-4717
    178. Newton, R, Holden, NS (2007) Separating transrepression and transactivation: a distressing divorce for the glucocorticoid receptor?. Mol Pharmacol 72: pp. 799-809
    179. Stoecklin, E, Wissler, M, Schaetzle, D, Pfitzner, E, Groner, B (1999) Interactions in the transcriptional regulation exerted by Stat5 and by members of the steroid hormone receptor family. J Steroid Biochem Mol Biol 69: pp. 195-204
    180. Martino, MU, Alesci, S, Chrousos, GP, Kino, T (2004) Interaction of the glucocorticoid receptor and the chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII): implications for the actions of glucocorticoids on glucose, lipoprotein, and xenobiotic metabolism. Ann N Y Acad Sci 1024: pp. 72-85
    181. Barbier, O, Torra, IP, Sirvent, A, Claudel, T, Blanquart, C, Duran-Sandoval, D, Kuipers, F, Kosykh, V, Fruchart, J, Staels, B (2003) FXR induces the UGT2B4 enzyme in hepatocytes: a potential mechanism of negative feedback control of FXR activity. Gastroenterology 124: pp. 1926-1940
    182. Shen, H, Zhang, Y, Ding, H, Wang, X, Chen, L, Jiang, H, Shen, X (2008) Farnesoid X receptor induces GLUT4 expression through FXR response element in the GLUT4 promoter. Cell Physiol Biochem 22: pp. 1-14
    183. Chong, HK, Biesinger, J, Seo, Y, Xie, X, Osborne, TF (2012) Genome-wide analysis of hepatic LRH-1 reveals a promoter binding preference and suggests a role in regulating genes of lipid metabolism in concert with FXR. BMC Genom 13: pp. 51
    184. Thomas, AM, Hart, SN, Li, G, Lu, H, Fang, Y, Fang, J, Zhong, X, Guo, GL (2013) Hepatocyte nuclear factor 4 alpha and farnesoid X receptor co-regulates gene transcription in mouse livers on a genome-wide scale. Pharm Res 30: pp. 2188-2198
    185. Fujino, T, Sato, Y, Une, M, Kanayasu-Toyoda, T, Yamaguchi, T, Shudo, K, Inoue, K, Nishimaki-Mogami, T (2003) In vitro farnesoid X receptor ligand sensor assay using surface plasmon resonance and based on ligand-induced coactivator association. J Steroid Biochem Mol Biol 87: pp. 247-252
    186. Kassam, A, Miao, B, Young, PR, Mukherjee, R (2003) Retinoid X receptor (RXR) agonist-induced antagonism of farnesoid X receptor (FXR) activity due to absence of coactivator recruitment and decreased DNA binding. J Biol Chem 278: pp. 10028-10032
    187. Zhang, Y, Castellani, LW, Sinal, CJ, Gonzalez, FJ, Edwards, PA (2004) Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes Dev 18: pp. 157-169
    188. Unno, A, Takada, I, Takezawa, S, Oishi, H, Baba, A, Shimizu, T, Tokita, A, Yanagisawa, J, Kato, S (2005) TRRAP as a hepatic coactivator of LXR and FXR function. Biochem Biophys Res Commun 327: pp. 933-938
    189. Balasubramaniyan, N, Ananthanarayanan, M, Suchy, FJ (2012) Direct methylation of FXR by Set7/9, a lysine methyltransferase, regulates the expression of FXR target genes. Am J Physiol Gastrointest Liver Physiol 302: pp. G937-G947
    190. Rizzo, G, Renga, B, Antonelli, E, Passeri, D, Pellicciari, R, Fiorucci, S (2005) The methyl transferase PRMT1 functions as co-activator of farnesoid X receptor (FXR)/9-cis retinoid X receptor and regulates transcription of FXR responsive genes. Mol Pharmacol 68: pp. 551-558
    191. Ananthanarayanan, M, Li, S, Balasubramaniyan, N, Suchy, FJ, Walsh, MJ (2004) Ligand-dependent activation of the farnesoid X-receptor directs arginine methylation of histone H3 by CARM1. J Biol Chem 279: pp. 54348-54357
    192. Ananthanarayanan, M, Li, Y, Surapureddi, S, Balasubramaniyan, N, Ahn, J, Goldstein, JA, Suchy, FJ (2011) Histone H3K4 trimethylation by MLL3 as part of ASCOM complex is critical for NR activation of bile acid transporter genes and is downregulated in cholestasis. Am J Physiol Gastrointest Liver Physiol 300: pp. G771-G781
    193. Kim, D, Lee, J, Lee, B, Lee, JW (2009) ASCOM controls farnesoid X receptor transactivation through its associated histone H3 lysine 4 methyltransferase activity. Mol Endocrinol 23: pp. 1556-1562
    194. Fang, S, Tsang, S, Jones, R, Ponugoti, B, Yoon, H, Wu, S, Chiang, C, Willson, TM, Kemper, JK (2008) The P300 acetylase is critical for ligand-activated farnesoid X receptor (FXR) induction of SHP. J Biol Chem 283: pp. 35086-35095
    195. Miao, J, Fang, S, Lee, J, Comstock, C, Knudsen, KE, Kemper, JK (2009) Functional specificities of Brm and Brg-1 Swi/Snf ATPases in the feedback regulation of hepatic bile acid biosynthesis. Mol Cell Biol 29: pp. 6170-6181
    196. Kainuma, M, Makishima, M, Hashimoto, Y, Miyachi, H (2007) Design, synthesis, and evaluation of non-steroidal farnesoid X receptor (FXR) antagonist. Bioorg Med Chem 15: pp. 2587-2600
    197. Ohno, M, Kunimoto, M, Nishizuka, M, Osada, S, Imagawa, M (2009) Ku proteins function as corepressors to regulate farnesoid X receptor-mediated gene expression. Biochem Biophys Res Commun 390: pp. 738-742
    198. Li, J, Lu, Y, Liu, R, Xiong, X, Zhang, Z, Zhang, X, Ning, G, Li, X (2011) DAX1 suppresses FXR transactivity as a novel co-repressor. Biochem Biophys Res Commun 412: pp. 660-666
    199. Kemper, JK, Xiao, Z, Ponugoti, B, Miao, J, Fang, S, Kanamaluru, D, Tsang, S, Wu, S, Chiang, C, Veenstra, TD (2009) FXR acetylation is normally dynamically regulated by P300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab 10: pp. 392-404
    200. Lien, F, Berthier, A, Bouchaert, E, Gheeraert, C, Alexandre, J, Porez, G, Prawitt, J, Dehondt, H, Ploton, M, Colin, S, Lucas, A, Patrice, A, Pattou, F, Diemer, H, Dorsselaer, A, Rachez, C, Kamilic, J, Groen, AK, Staels, B, Lefebvre, P (2014) Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk. J Clin Invest 124: pp. 1037-1051
    201. Renga, B, D鈥橝more, C, Cipriani, S, Mencarelli, A, Carino, A, Sepe, V, Zampella, A, Distrutti, E, Fiorucci, S (2013) FXR mediates a chromatin looping in the GR promoter thus promoting the resolution of colitis in rodents. Pharmacol Res 77: pp. 1-10
    202. Li, W, Notani, D, Ma, Q, Tanasa, B, Nunez, E, Chen, AY, Merkurjev, D, Zhang, J, Ohgi, K, Song, X, Oh, S, Kim, H, Glass, CK, Rosenfeld, MG (2013) Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498: pp. 516-520
    203. Claudel, T, Sturm, E, Duez, H, Torra, IP, Sirvent, A, Kosykh, V, Fruchart, J, Dallongeville, J, Hum, DW, Kuipers, F, Staels, B (2002) Bile acid-activated nuclear receptor FXR suppresses apolipoprotein a-i transcription via a negative FXR response element. J Clin Invest 109: pp. 961-971
    204. Gard猫s, C, Blum, D, Bleicher, K, Chaput, E, Ebeling, M, Hartman, P, Handschin, C, Richter, H, Benson, GM (2011) Studies in mice, hamsters, and rats demonstrate that repression of hepatic apoA-i expression by taurocholic acid in mice is not mediated by the farnesoid-X-receptor. J Lipid Res 52: pp. 1188-1199
    205. Chennamsetty, I, Claudel, T, Kostner, KM, Baghdasaryan, A, Kratky, D, Levak-Frank, S, Frank, S, Gonzalez, FJ, Trauner, M, Kostner, GM (2011) Farnesoid X receptor represses hepatic human APOA gene expression. J Clin Invest 121: pp. 3724-3734
    206. Lu, Y, Heydel, J, Li, X, Bratton, S, Lindblom, T, Radominska-Pandya, A (2005) Lithocholic acid decreases expression of UGT2B7 in Caco-2 Cells: a potential role for a negative farnesoid X receptor response element. Drug Metab Dispos 33: pp. 937-946
    207. Miyata, M, Matsuda, Y, Tsuchiya, H, Kitada, H, Akase, T, Shimada, M, Nagata, K, Gonzalez, FJ, Yamazoe, Y (2006) Chenodeoxycholic acid-mediated activation of the farnesoid X receptor negatively regulates hydroxysteroid sulfotransferase. Drug Metab Pharmacokinet 21: pp. 315-323
    208. Seok S, Fu T, Choi S, Li Y, Zhu R, Kumar S, Sun X, Yoon G, Kang Y, Zhong W, Ma聽J, Kemper B,Kemper JK (2014) Transcriptional regulation of autophagy by an FXR-CREB axis. Nature
    209. Lee JM, Wagner M, Xiao R, Kim KH, Feng D, Lazar MA, Moore DD (2014) Nutrient-sensing nuclear receptors coordinate autophagy. Nature
    210. Wang, Y, Chen, W, Wang, M, Yu, D, Forman, BM, Huang, W (2008) Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response. Hepatology 48: pp. 1632-1643
    211. Vavassori, P, Mencarelli, A, Renga, B, Distrutti, E, Fiorucci, S (2009) The bile acid receptor FXR is a modulator of intestinal innate immunity. J Immunol 183: pp. 6251-6261
    212. Gadaleta, RM, Oldenburg, B, Willemsen, ECL, Spit, M, Murzilli, S, Salvatore, L, Klomp, LWJ, Siersema, PD, Erpecum, KJ, Mil, SWC (2011) Activation of bile salt nuclear receptor FXR is repressed by pro-inflammatory cytokines activating NF-魏b signaling in the intestine. Biochim Biophys Acta 1812: pp. 851-858
    213. Pawlak, M, Baug茅, E, Bourguet, W, Bosscher, K, Lalloyer, F, Tailleux, A, Lebherz, C, Lefebvre, P, Staels, B (2014) The transrepressive activity of peroxisome proliferator-activated receptor alpha is necessary and sufficient to prevent liver fibrosis in mice. Hepatology 60: pp. 1593-1606
    214. Houten, SM, Volle, DH, Cummins, CL, Mangelsdorf, DJ, Auwerx, J (2007) In vivo imaging of farnesoid X receptor activity reveals the ileum as the primary bile acid signaling tissue. Mol Endocrinol 21: pp. 1312-1323
    215. Hatori, M, Vollmers, C, Zarrinpar, A, DiTacchio, L, Bushong, EA, Gill, S, Leblanc, M, Chaix, A, Joens, M, Fitzpatrick, JAJ, Ellisman, MH, Panda, S (2012) Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 15: pp. 848-860
    216. Zhang, YJ, Guo, GL, Klaassen, CD (2011) Diurnal variations of mouse plasma and hepatic bile acid concentrations as well as expression of biosynthetic enzymes and transporters. PLoS ONE 6: pp. e16683
    217. Pan, X, Zhang, Y, Wang, L, Hussain, MM (2010) Diurnal regulation of MTP and plasma triglyceride by CLOCK is mediated by SHP. Cell Metab 12: pp. 174-186
    218. Lee, J, Seok, S, Yu, P, Kim, K, Smith, Z, Rivas-Astroza, M, Zhong, S, Kemper, JK (2012) Genomic analysis of hepatic farnesoid X receptor binding sites reveals altered binding in obesity and direct gene repression by farnesoid X receptor in mice. Hepatology 56: pp. 108-117
    219. Hardie, DG, Ross, FA, Hawley, SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13: pp. 251-262
    220. Purushotham, A, Xu, Q, Lu, J, Foley, JF, Yan, X, Kim, D, Kemper, JK, Li, X (2012) Hepatic deletion of SIRT1 decreases hepatocyte nuclear factor 1伪/farnesoid X receptor signaling and induces formation of cholesterol gallstones in mice. Mol Cell Biol 32: pp. 1226-1236
    221. Gineste, R, Sirvent, A, Paumelle, R, Helleboid, S, Aquilina, A, Darteil, R, Hum, DW, Fruchart, J, Staels, B (2008) Phosphorylation of farnesoid X receptor by protein kinase C promotes its transcriptional activity. Mol Endocrinol 22: pp. 2433-2447
    222. Frankenberg, T, Miloh, T, Chen, FY, Ananthanarayanan, M, Sun, A, Balasubramaniyan, N, Arias, I, Setchell, KDR, Suchy, FJ, Shneider, BL (2008) The membrane protein ATPase class I type 8B member 1 signals through protein kinase C zeta to activate the farnesoid X receptor. Hepatology 48: pp. 1896-1905
    223. Balasubramaniyan, N, Luo, Y, Sun, A, Suchy, FJ (2013) SUMOylation of the farnesoid X receptor (FXR) regulates the expression of FXR target genes. J Biol Chem 288: pp. 13850-13862
    224. Ryan, KK, Tremaroli, V, Clemmensen, C, Kovatcheva-Datchary, P, Myronovych, A, Karns, R, Wilson-P茅rez, HE, Sandoval, DA, Kohli, R, B盲ckhed, F, Seeley, RJ (2014) FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature 509: pp. 183-188
    225. Kuipers, F, Groen, AK (2014) FXR: the key to benefits in bariatric surgery?. Nat Med 20: pp. 337-338
    226. Adorini, L, Pruzanski, M, Shapiro, D (2012) Farnesoid X receptor targeting to treat nonalcoholic steatohepatitis. Drug Discov Today 17: pp. 988-997
    227. Kemper, JK (2011) Regulation of FXR transcriptional activity in health and disease: emerging roles of FXR cofactors and post-translational modifications. Biochim Biophys Acta 1812: pp. 842-850
    228. Lew, J, Zhao, A, Yu, J, Huang, L, Pedro, N, Pel谩ez, F, Wright, SD, Cui, J (2004) The farnesoid X receptor controls gene expression in a ligand- and promoter-selective fashion. J Biol Chem 279: pp. 8856-8861
    229. Bramlett, KS, Yao, S, Burris, TP (2000) Correlation of farnesoid X receptor coactivator recruitment and cholesterol 7alpha-hydroxylase gene repression by bile acids. Mol Genet Metab 71: pp. 609-615
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Biomedicine
    Life Sciences
    Biochemistry
  • 出版者:Birkh盲user Basel
  • ISSN:1420-9071
文摘
Bile acids (BAs) are amphipathic molecules produced from cholesterol by the liver. Expelled from the gallbladder upon meal ingestion, BAs serve as fat solubilizers in the intestine. BAs are reabsorbed in the ileum and return via the portal vein to the liver where, together with nutrients, they provide signals to coordinate metabolic responses. BAs act on energy and metabolic homeostasis through the activation of membrane and nuclear receptors, among which the nuclear receptor farnesoid X receptor (FXR) is an important regulator of several metabolic pathways. Highly expressed in the liver and the small intestine, FXR contributes to BA effects on metabolism, inflammation and cell cycle control. The pharmacological modulation of its activity has emerged as a potential therapeutic strategy for liver and metabolic diseases. This review highlights recent advances regarding the mechanisms by which the BA sensor FXR contributes to global signaling effects of BAs, and how FXR activity may be regulated by nutrient-sensitive signaling pathways.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700