用户名: 密码: 验证码:
Genome wide in silico analysis of Plasmodium falciparum phosphatome
详细信息    查看全文
  • 作者:Rajan Pandey (14)
    Asif Mohmmed (15)
    Christine Pierrot (16)
    Jamal Khalife (16)
    Pawan Malhotra (15)
    Dinesh Gupta (14)

    14. Structural and Computational Biology group
    ; International Centre for Genetic Engineering and Biotechnology ; Aruna Asaf Ali Marg ; New Delhi ; 110067 ; India
    15. Malaria Group
    ; International Centre for Genetic Engineering and Biotechnology ; Aruna Asaf Ali Marg ; New Delhi ; 110067 ; India
    16. Center for Infection and Immunity of Lille
    ; Inserm U1019 ; CNRS ; Institut Pasteur de Lille ; Univ Lille Nord de France ; 1 rue du Professeur Calmette ; Lille cedex ; 59019 ; France
  • 关键词:Posttranslational modifications ; PTM ; PFAM ; CDD ; Phosphatome ; Phosphatase ; Dephosphorylation
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:1,111 KB
  • 参考文献:1. Nayyar, GM, Breman, JG, Newton, PN, Herrington, J (2012) Poor-quality antimalarial drugs in southeast Asia and sub-Saharan Africa. Lancet Infect Dis 12: pp. 488-496
    2. Lasonder, E, Green, JL, Camarda, G, Talabani, H, Holder, AA, Langsley, G, Alano, P (2012) The Plasmodium falciparum schizont phosphoproteome reveals extensive phosphatidylinositol and cAMP-protein kinase A signaling. J Proteome Res 11: pp. 5323-5337
    3. Doerig, C, Baker, D, Billker, O, Blackman, MJ, Chitnis, C, Dhar Kumar, S, Heussler, V, Holder, AA, Kocken, C, Krishna, S, Langsley, G, Lasonder, E, Menard, R, Meissner, M, Pradel, G, Ranford-Cartwright, L, Sharma, A, Sharma, P, Tardieux, T, Tatu, U, Alano, P (2009) Signalling in malaria parasites. The MALSIG consortium. Parasite 16: pp. 169-182
    4. Jones, ML, Collins, MO, Goulding, D, Choudhary, JS, Rayner, JC (2012) Analysis of protein palmitoylation reveals a pervasive role in Plasmodium development and pathogenesis. Cell Host Microbe 12: pp. 246-258
    5. Bodenmiller, B, Mueller, LN, Mueller, M, Domon, B, Aebersold, R (2007) Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat Methods 4: pp. 231-237
    6. Hanks, SK (2003) Genomic analysis of the eukaryotic protein kinase superfamily: a perspective. Genome Biol 4: pp. 111
    7. Billker, O, Lourido, S, Sibley, LD (2009) Calcium-dependent signaling and kinases in apicomplexan parasites. Cell Host Microbe 5: pp. 612-622
    8. Dvorin, JD, Martyn, DC, Patel, SD, Grimley, JS, Collins, CR, Hopp, CS, Bright, AT, Westenberger, S, Winzeler, E, Blackman, MJ, Baker, DA, Wandless, TJ, Duraisingh, MT (2010) A plant-like kinase in Plasmodium falciparum regulates parasite egress from erythrocytes. Science 328: pp. 910-912
    9. Fentress, SJ, Behnke, MS, Dunay, IR, Mashayekhi, M, Rommereim, LM, Fox, BA, Bzik, DJ, Taylor, GA, Turk, BE, Lichti, CF, Townsend, RR, Qiu, W, Hui, R, Beatty, WL, Sibley, LD (2010) Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence. Cell Host Microbe 8: pp. 484-495
    10. Leykauf, K, Treeck, M, Gilson, PR, Nebl, T, Braulke, T, Cowman, AF, Gilberger, TW, Crabb, BS (2010) Protein kinase a dependent phosphorylation of apical membrane antigen 1 plays an important role in erythrocyte invasion by the malaria parasite. PLoS Pathog 6: pp. e1000941
    11. Lourido, S, Shuman, J, Zhang, C, Shokat, KM, Hui, R, Sibley, LD (2010) Calcium-dependent protein kinase 1 is an essential regulator of exocytosis in Toxoplasma. Nature 465: pp. 359-362
    12. Moon, RW, Taylor, CJ, Bex, C, Schepers, R, Goulding, D, Janse, CJ, Waters, AP, Baker, DA, Billker, O (2009) A cyclic GMP signalling module that regulates gliding motility in a malaria parasite. PLoS Pathog 5: pp. e1000599
    13. Steinfeldt, T, Konen-Waisman, S, Tong, L, Pawlowski, N, Lamkemeyer, T, Sibley, LD, Hunn, JP, Howard, JC (2011) Phosphorylation of mouse immunity-related GTPase (IRG) resistance proteins is an evasion strategy for virulent Toxoplasma gondii. PLoS Biol 8: pp. e1000576
    14. Treeck, M, Sanders, JL, Elias, JE, Boothroyd, JC (2011) The phosphoproteomes of Plasmodium falciparum and Toxoplasma gondii reveal unusual adaptations within and beyond the parasites鈥?boundaries. Cell Host Microbe 10: pp. 410-419
    15. Ward, P, Equinet, L, Packer, J, Doerig, C (2004) Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote. BMC Genomics 5: pp. 79
    16. Solyakov, L, Halbert, J, Alam, MM, Semblat, JP, Dorin-Semblat, D, Reininger, L, Bottrill, AR, Mistry, S, Abdi, A, Fennell, C, Holland, Z, Demarta, C, Bouza, Y, Sicard, A, Nivez, MP, Eschenlauer, S, Lama, T, Thomas, DC, Sharma, P, Agarwal, S, Kern, S, Pradel, G, Graciotti, M, Tobin, AB, Doerig, C (2011) Global kinomic and phospho-proteomic analyses of the human malaria parasite Plasmodium falciparum. Nat Commun 2: pp. 565
    17. Talevich, E, Tobin, AB, Kannan, N, Doerig, C (2012) An evolutionary perspective on the kinome of malaria parasites. Philos Trans R Soc Lond B Biol Sci 367: pp. 2607-2618
    18. Philip, N, Vaikkinen, HJ, Tetley, L, Waters, AP (2012) A unique Kelch domain phosphatase in Plasmodium regulates ookinete morphology, motility and invasion. PLoS One 7: pp. e44617
    19. Fernandez-Pol, S, Slouka, Z, Bhattacharjee, S, Fedotova, Y, Freed, S, An, X, Holder, AA, Campanella, E, Low, PS, Mohandas, N, Haldar, K (2013) A bacterial phosphatase-like enzyme of the malaria parasite Plasmodium falciparum possesses tyrosine phosphatase activity and is implicated in the regulation of band 3 dynamics during parasite invasion. Eukaryot Cell 12: pp. 1179-1191
    20. Patzewitz, EM, Guttery, DS, Poulin, B, Ramakrishnan, C, Ferguson, DJ, Wall, RJ, Brady, D, Holder, AA, Szoor, B, Tewari, R (2013) An ancient protein phosphatase, SHLP1, is critical to microneme development in Plasmodium ookinetes and parasite transmission. Cell Rep 3: pp. 622-629
    21. Andreeva, AV, Kutuzov, MA (2001) PPP family of protein Ser/Thr phosphatases: two distinct branches?. Mol Biol Evol 18: pp. 448-452
    22. Wilkes, JM, Doerig, C (2008) The protein-phosphatome of the human malaria parasite Plasmodium falciparum. BMC Genomics 9: pp. 412
    23. Guttery, DS, Poulin, B, Ramaprasad, A, Wall, RJ, Ferguson, DJ, Brady, D, Patzewitz, EM, Whipple, S, Straschil, U, Wright, MH, Mohamed, AM, Radhakrishnan, A, Arold, ST, Tate, EW, Holder, AA, Wickstead, B, Pain, A, Tewari, R (2014) Genome-wide functional analysis of Plasmodium protein phosphatases reveals key regulators of parasite development and differentiation. Cell Host Microbe 16: pp. 128-140
    24. Wera, S, Hemmings, BA (1995) Serine/threonine protein phosphatases. Biochem J 311: pp. 17-29
    25. Cohen, PT (1997) Novel protein serine/threonine phosphatases: variety is the spice of life. Trends Biochem Sci 22: pp. 245-251
    26. Hunter, T (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80: pp. 225-236
    27. Gallego, M, Virshup, DM (2005) Protein serine/threonine phosphatases: life, death, and sleeping. Curr Opin Cell Biol 17: pp. 197-202
    28. Bahl, A, Brunk, B, Crabtree, J, Fraunholz, MJ, Gajria, B, Grant, GR, Ginsburg, H, Gupta, D, Kissinger, JC, Labo, P, Li, L, Mailman, MD, Milgram, AJ, Pearson, DS, Roos, DS, Schug, J, Stoeckert, CJ, Whetzel, P (2003) PlasmoDB: the Plasmodium genome resource. A database integrating experimental and computational data. Nucleic Acids Res 31: pp. 212-215
    29. Marchler-Bauer, A, Lu, S, Anderson, JB, Chitsaz, F, Derbyshire, MK, DeWeese-Scott, C, Fong, JH, Geer, LY, Geer, RC, Gonzales, NR, Gwadz, M, Hurwitz, DI, Jackson, JD, Ke, Z, Lanczycki, CJ, Lu, F, Marchler, GH, Mullokandov, M, Omelchenko, MV, Robertson, CL, Song, JS, Thanki, N, Yamashita, RA, Zhang, D, Zhang, N, Zheng, C, Bryant, SH (2010) CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39: pp. D225-D229
    30. Finn, RD, Tate, J, Mistry, J, Coggill, PC, Sammut, SJ, Hotz, HR, Ceric, G, Forslund, K, Eddy, SR, Sonnhammer, EL, Bateman, A (2008) The Pfam protein families database. Nucleic Acids Res 36: pp. D281-D288
    31. Liberti, S, Sacco, F, Calderone, A, Perfetto, L, Iannuccelli, M, Panni, S, Santonico, E, Palma, A, Nardozza, AP, Castagnoli, L, Cesareni, G (2013) HuPho: the human phosphatase portal. FEBS J 280: pp. 379-387
    32. Franceschini, A, Szklarczyk, D, Frankild, S, Kuhn, M, Simonovic, M, Roth, A, Lin, J, Minguez, P, Bork, P, von Mering, C, Jensen, LJ (2012) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41: pp. D808-D815
    33. Date, SV, Stoeckert, CJ (2006) Computational modeling of the Plasmodium falciparum interactome reveals protein function on a genome-wide scale. Genome Res 16: pp. 542-549
    34. Kutuzov, MA, Andreeva, AV (2002) Protein Ser/Thr phosphatases with kelch-like repeat domains. Cell Signal 14: pp. 745-750
    35. Cohen, PT, Philp, A, Vazquez-Martin, C (2005) Protein phosphatase 4鈥揻rom obscurity to vital functions. FEBS Lett 579: pp. 3278-3286
    36. Andreeva, AV, Kutuzov, MA (2004) Widespread presence of 鈥渂acterial-like鈥?PPP phosphatases in eukaryotes. BMC Evol Biol 4: pp. 47
    37. Blisnick, T, Vincensini, L, Fall, G, Braun-Breton, C (2006) Protein phosphatase 1, a Plasmodium falciparum essential enzyme, is exported to the host cell and implicated in the release of infectious merozoites. Cell Microbiol 8: pp. 591-601
    38. Daher, W, Browaeys, E, Pierrot, C, Jouin, H, Dive, D, Meurice, E, Dissous, C, Capron, M, Tomavo, S, Doerig, C, Cailliau, K, Khalife, J (2006) Regulation of protein phosphatase type 1 and cell cycle progression by PfLRR1, a novel leucine-rich repeat protein of the human malaria parasite Plasmodium falciparum. Mol Microbiol 60: pp. 578-590
    39. Freville, A, Cailliau-Maggio, K, Pierrot, C, Tellier, G, Kalamou, H, Lafitte, S, Martoriati, A, Pierce, RJ, Bodart, JF, Khalife, J (2013) Plasmodium falciparum encodes a conserved active inhibitor-2 for Protein Phosphatase type 1: perspectives for novel anti-plasmodial therapy. BMC Biol 11: pp. 80
    40. Freville, A, Landrieu, I, Garcia-Gimeno, MA, Vicogne, J, Montbarbon, M, Bertin, B, Verger, A, Kalamou, H, Sanz, P, Werkmeister, E, Pierrot, C, Khalife, J (2011) Plasmodium falciparum inhibitor-3 homolog increases protein phosphatase type 1 activity and is essential for parasitic survival. J Biol Chem 287: pp. 1306-1321
    41. Bhattacharyya, MK, Hong, Z, Kongkasuriyachai, D, Kumar, N (2002) Plasmodium falciparum protein phosphatase type 1 functionally complements a glc7 mutant in Saccharomyces cerevisiae. Int J Parasitol 32: pp. 739-747
    42. Kumar, R, Adams, B, Oldenburg, A, Musiyenko, A, Barik, S (2002) Characterisation and expression of a PP1 serine/threonine protein phosphatase (PfPP1) from the malaria parasite. Plasmodium falciparum: demonstration of its essential role using RNA interference. Malar J 1: pp. 5
    43. Aurrecoechea, C, Brestelli, J, Brunk, BP, Dommer, J, Fischer, S, Gajria, B, Gao, X, Gingle, A, Grant, G, Harb, OS, Heiges, M, Innamorato, F, Iodice, J, Kissinger, JC, Kraemer, E, Li, W, Miller, JA, Nayak, V, Pennington, C, Pinney, DF, Roos, DS, Ross, C, Stoeckert, CJ, Treatman, C, Wang, H (2009) PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res 37: pp. D539-D543
    44. Adams, J, Kelso, R, Cooley, L (2000) The kelch repeat superfamily of proteins: propellers of cell function. Trends Cell Biol 10: pp. 17-24
    45. Mora-Garcia, S, Vert, G, Yin, Y, Cano-Delgado, A, Cheong, H, Chory, J (2004) Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes Dev 18: pp. 448-460
    46. Waller, RF, McFadden, GI (2005) The apicoplast: a review of the derived plastid of apicomplexan parasites. Curr Issues Mol Biol 7: pp. 57-79
    47. Guttery, DS, Poulin, B, Ferguson, DJ, Szoor, B, Wickstead, B, Carroll, PL, Ramakrishnan, C, Brady, D, Patzewitz, EM, Straschil, U, Solyakov, L, Green, JL, Sinden, RE, Tobin, AB, Holder, AA, Tewari, R (2012) A unique protein phosphatase with kelch-like domains (PPKL) in Plasmodium modulates ookinete differentiation, motility and invasion. PLoS Pathog 8: pp. e1002948
    48. Dobson, S, May, T, Berriman, M, Del Vecchio, C, Fairlamb, AH, Chakrabarti, D, Barik, S (1999) Characterization of protein Ser/Thr phosphatases of the malaria parasite, Plasmodium falciparum: inhibition of the parasitic calcineurin by cyclophilin-cyclosporin complex. Mol Biochem Parasitol 99: pp. 167-181
    49. Vandomme, A, Freville, A, Cailliau, K, Kalamou, H, Bodart, JF, Khalife, J, Pierrot, C (2014) PhosphoTyrosyl phosphatase activator of Plasmodium falciparum: identification of its residues involved in binding to and activation of PP2A. Int J Mol Sci 15: pp. 2431-2453
    50. Li, JL, Baker, DA (1997) Protein phosphatase beta, a putative type-2A protein phosphatase from the human malaria parasite Plasmodium falciparum. Eur J Biochem 249: pp. 98-106
    51. Rusnak, F, Mertz, P (2000) Calcineurin: form and function. Physiol Rev 80: pp. 1483-1521
    52. Singh, S, More, KR, Chitnis, CE (2013) Role of calcineurin and actin dynamics in regulated secretion of microneme proteins in Plasmodium falciparum merozoites during erythrocyte invasion. Cell Microbiol 16: pp. 50-63
    53. Dobson, S, Kar, B, Kumar, R, Adams, B, Barik, S (2001) A novel tetratricopeptide repeat (TPR) containing PP5 serine/threonine protein phosphatase in the malaria parasite. Plasmodium falciparum. BMC Microbiol 1: pp. 31
    54. Lindenthal, C, Klinkert, MQ (2002) Identification and biochemical characterisation of a protein phosphatase 5 homologue from Plasmodium falciparum. Mol Biochem Parasitol 120: pp. 257-268
    55. Andreeva, AV, Kutuzov, MA (1999) RdgC/PP5-related phosphatases: novel components in signal transduction. Cell Signal 11: pp. 555-562
    56. Dobson, S, Bracchi, V, Chakrabarti, D, Barik, S (2001) Characterization of a novel serine/threonine protein phosphatase (PfPPJ) from the malaria parasite. Plasmodium falciparum. Mol Biochem Parasitol 115: pp. 29-39
    57. Kumar, R, Musiyenko, A, Oldenburg, A, Adams, B, Barik, S (2004) Post-translational generation of constitutively active cores from larger phosphatases in the malaria parasite. Plasmodium falciparum: implications for proteomics. BMC Mol Biol 5: pp. 6
    58. Bajsa, J, Duke, SO, Tekwani, BL (2008) Plasmodium falciparum serine/threonine phoshoprotein phosphatases (PPP): from housekeeper to the 鈥榟oly grail鈥? Curr Drug Targets 9: pp. 997-1012
    59. Andreeva, AV, Kutuzov, MA (2008) Protozoan protein tyrosine phosphatases. Int J Parasitol 38: pp. 1279-1295
    60. Kutuzov, MA, Andreeva, AV (2008) Protein Ser/Thr phosphatases of parasitic protozoa. Mol Biochem Parasitol 161: pp. 81-90
    61. Kutuzov, MA, Andreeva, AV (2011) Prediction of biological functions of Shewanella-like protein phosphatases (Shelphs) across different domains of life. Funct Integr Genomics 12: pp. 11-23
    62. Hu, G, Cabrera, A, Kono, M, Mok, S, Chaal, BK, Haase, S, Engelberg, K, Cheemadan, S, Spielmann, T, Preiser, PR, Gilberger, TW, Bozdech, Z (2009) Transcriptional profiling of growth perturbations of the human malaria parasite Plasmodium falciparum. Nat Biotechnol 28: pp. 91-98
    63. Sun, P, Sleat, DE, Lecocq, M, Hayman, AR, Jadot, M, Lobel, P (2008) Acid phosphatase 5 is responsible for removing the mannose 6-phosphate recognition marker from lysosomal proteins. Proc Natl Acad Sci U S A 105: pp. 16590-16595
    64. Bosch, J, Paige, MH, Vaidya, AB, Bergman, LW, Hol, WG (2012) Crystal structure of GAP50, the anchor of the invasion machinery in the inner membrane complex of Plasmodium falciparum. J Struct Biol 178: pp. 61-73
    65. Muller, IB, Knockel, J, Eschbach, ML, Bergmann, B, Walter, RD, Wrenger, C (2010) Secretion of an acid phosphatase provides a possible mechanism to acquire host nutrients by Plasmodium falciparum. Cell Microbiol 12: pp. 677-691
    66. Yeoman, JA, Hanssen, E, Maier, AG, Klonis, N, Maco, B, Baum, J, Turnbull, L, Whitchurch, CB, Dixon, MW, Tilley, L (2011) Tracking Glideosome-associated protein 50 reveals the development and organization of the inner membrane complex of Plasmodium falciparum. Eukaryot Cell 10: pp. 556-564
    67. Arighi, CN, Hartnell, LM, Aguilar, RC, Haft, CR, Bonifacino, JS (2004) Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J Cell Biol 165: pp. 123-133
    68. Seaman, MN (2004) Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J Cell Biol 165: pp. 111-122
    69. Collins, BM, Skinner, CF, Watson, PJ, Seaman, MN, Owen, DJ (2005) Vps29 has a phosphoesterase fold that acts as a protein interaction scaffold for retromer assembly. Nat Struct Mol Biol 12: pp. 594-602
    70. Damen, E, Krieger, E, Nielsen, JE, Eygensteyn, J, van Leeuwen, JE (2006) The human Vps29 retromer component is a metallo-phosphoesterase for a cation-independent mannose 6-phosphate receptor substrate peptide. Biochem J 398: pp. 399-409
    71. Wang, D, Guo, M, Liang, Z, Fan, J, Zhu, Z, Zang, J, Li, X, Teng, M, Niu, L, Dong, Y, Liu, P (2005) Crystal structure of human vacuolar protein sorting protein 29 reveals a phosphodiesterase/nuclease-like fold and two protein-protein interaction sites. J Biol Chem 280: pp. 22962-22967
    72. Chapman, KB, Boeke, JD (1991) Isolation and characterization of the gene encoding yeast debranching enzyme. Cell 65: pp. 483-492
    73. Nam, K, Lee, G, Trambley, J, Devine, SE, Boeke, JD (1997) Severe growth defect in a Schizosaccharomyces pombe mutant defective in intron lariat degradation. Mol Cell Biol 17: pp. 809-818
    74. Kim, JW, Kim, HC, Kim, GM, Yang, JM, Boeke, JD, Nam, K (2000) Human RNA lariat debranching enzyme cDNA complements the phenotypes of Saccharomyces cerevisiae dbr1 and Schizosaccharomyces pombe dbr1 mutants. Nucleic Acids Res 28: pp. 3666-3673
    75. Khalid, MF, Damha, MJ, Shuman, S, Schwer, B (2005) Structure-function analysis of yeast RNA debranching enzyme (Dbr1), a manganese-dependent phosphodiesterase. Nucleic Acids Res 33: pp. 6349-6360
    76. Eder, S, Shi, L, Jensen, K, Yamane, K, Hulett, FM (1996) A Bacillus subtilis secreted phosphodiesterase/alkaline phosphatase is the product of a Pho regulon gene, phoD. Microbiology 142: pp. 2041-2047
    77. Pop, O, Martin, U, Abel, C, Muller, JP (2002) The twin-arginine signal peptide of PhoD and the TatAd/Cd proteins of Bacillus subtilis form an autonomous Tat translocation system. J Biol Chem 277: pp. 3268-3273
    78. D鈥橝mours, D, Jackson, SP (2002) The Mre11 complex: at the crossroads of dna repair and checkpoint signalling. Nat Rev Mol Cell Biol 3: pp. 317-327
    79. Borde, V (2007) The multiple roles of the Mre11 complex for meiotic recombination. Chromosome Res 15: pp. 551-563
    80. Usui, T, Ohta, T, Oshiumi, H, Tomizawa, J, Ogawa, H, Ogawa, T (1998) Complex formation and functional versatility of Mre11 of budding yeast in recombination. Cell 95: pp. 705-716
    81. Trujillo, KM, Roh, DH, Chen, L, Van Komen, S, Tomkinson, A, Sung, P (2003) Yeast xrs2 binds DNA and helps target rad50 and mre11 to DNA ends. J Biol Chem 278: pp. 48957-48964
    82. Paull, TT, Gellert, M (1998) The 3鈥?to 5鈥?exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol Cell 1: pp. 969-979
    83. Das, AK, Helps, NR, Cohen, PT, Barford, D (1996) Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution. EMBO J 15: pp. 6798-6809
    84. Schweighofer, A, Hirt, H, Meskiene, I (2004) Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci 9: pp. 236-243
    85. Barford, D, Das, AK, Egloff, MP (1998) The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biophys Biomol Struct 27: pp. 133-164
    86. Mamoun, CB, Sullivan, DJ, Banerjee, R, Goldberg, DE (1998) Identification and characterization of an unusual double serine/threonine protein phosphatase 2C in the malaria parasite Plasmodium falciparum. J Biol Chem 273: pp. 11241-11247
    87. Mamoun, CB, Goldberg, DE (2001) Plasmodium protein phosphatase 2C dephosphorylates translation elongation factor 1beta and inhibits its PKC-mediated nucleotide exchange activity in vitro. Mol Microbiol 39: pp. 973-981
    88. Raugei, G, Ramponi, G, Chiarugi, P (2002) Low molecular weight protein tyrosine phosphatases: small, but smart. Cell Mol Life Sci 59: pp. 941-949
    89. Boutros, R, Dozier, C, Ducommun, B (2006) The when and wheres of CDC25 phosphatases. Curr Opin Cell Biol 18: pp. 185-191
    90. Owens, DM, Keyse, SM (2007) Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene 26: pp. 3203-3213
    91. Trinkle-Mulcahy, L, Lamond, AI (2006) Mitotic phosphatases: no longer silent partners. Curr Opin Cell Biol 18: pp. 623-631
    92. Fauman, EB, Saper, MA (1996) Structure and function of the protein tyrosine phosphatases. Trends Biochem Sci 21: pp. 413-417
    93. Roma-Mateo, C, Rios, P, Tabernero, L, Attwood, TK, Pulido, R (2007) A novel phosphatase family, structurally related to dual-specificity phosphatases, that displays unique amino acid sequence and substrate specificity. J Mol Biol 374: pp. 899-909
    94. Kumar, R, Musiyenko, A, Cioffi, E, Oldenburg, A, Adams, B, Bitko, V, Krishna, SS, Barik, S (2004) A zinc-binding dual-specificity YVH1 phosphatase in the malaria parasite, Plasmodium falciparum, and its interaction with the nuclear protein, pescadillo. Mol Biochem Parasitol 133: pp. 297-310
    95. Pendyala, PR, Ayong, L, Eatrides, J, Schreiber, M, Pham, C, Chakrabarti, R, Fidock, DA, Allen, CM, Chakrabarti, D (2008) Characterization of a PRL protein tyrosine phosphatase from Plasmodium falciparum. Mol Biochem Parasitol 158: pp. 1-10
    96. Stephens, BJ, Han, H, Gokhale, V, Von Hoff, DD (2005) PRL phosphatases as potential molecular targets in cancer. Mol Cancer Ther 4: pp. 1653-1661
    97. Singh, M, Mukherjee, P, Narayanasamy, K, Arora, R, Sen, SD, Gupta, S, Natarajan, K, Malhotra, P (2009) Proteome analysis of Plasmodium falciparum extracellular secretory antigens at asexual blood stages reveals a cohort of proteins with possible roles in immune modulation and signaling. Mol Cell Proteomics 8: pp. 2102-2118
    98. Rigden, DJ (2008) The histidine phosphatase superfamily: structure and function. Biochem J 409: pp. 333-348
    99. Hills, T, Srivastava, A, Ayi, K, Wernimont, AK, Kain, K, Waters, AP, Hui, R, Pizarro, JC (2011) Characterization of a new phosphatase from Plasmodium. Mol Biochem Parasitol 179: pp. 69-79
    100. Koonin, EV, Tatusov, RL (1994) Computer analysis of bacterial haloacid dehalogenases defines a large superfamily of hydrolases with diverse specificity. Application of an iterative approach to database search. J Mol Biol 244: pp. 125-132
    101. Burroughs, AM, Allen, KN, Dunaway-Mariano, D, Aravind, L (2006) Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes. J Mol Biol 361: pp. 1003-1034
    102. Yu, X, Chini, CC, He, M, Mer, G, Chen, J (2003) The BRCT domain is a phospho-protein binding domain. Science 302: pp. 639-642
    103. Yeo, M, Lin, PS, Dahmus, ME, Gill, GN (2003) A novel RNA polymerase II C-terminal domain phosphatase that preferentially dephosphorylates serine 5. J Biol Chem 278: pp. 26078-26085
    104. Hausmann, S, Shuman, S (2003) Defining the active site of Schizosaccharomyces pombe C-terminal domain phosphatase Fcp1. J Biol Chem 278: pp. 13627-13632
    105. Siribal, S, Weinfeld, M, Karimi-Busheri, F, Mark Glover, JN, Bernstein, NK, Aceytuno, D, Chavalitshewinkoon-Petmitr, P (2011) Molecular characterization of Plasmodium falciparum putative polynucleotide kinase/phosphatase. Mol Biochem Parasitol 180: pp. 1-7
    106. Stukey, J, Carman, GM (1997) Identification of a novel phosphatase sequence motif. Protein Sci 6: pp. 469-472
    107. Rudolph, J (2007) Cdc25 phosphatases: structure, specificity, and mechanism. Biochemistry 46: pp. 3595-3604
    108. Campbell, CO, Santiago, DN, Guida, WC, Manetsch, R, Adams, JH (2014) In silico characterization of an atypical MAPK phosphatase of Plasmodium falciparum as a suitable target for drug discovery. Chem Biol Drug Des 84: pp. 158-168
    109. Balu, B, Campbell, C, Sedillo, J, Maher, S, Singh, N, Thomas, P, Zhang, M, Pance, A, Otto, TD, Rayner, JC, Adams, JH (2013) Atypical mitogen-activated protein kinase phosphatase implicated in regulating transition from pre-S-Phase asexual intraerythrocytic development of Plasmodium falciparum. Eukaryot Cell 12: pp. 1171-1178
    110. Uwanogho, DA, Hardcastle, Z, Balogh, P, Mirza, G, Thornburg, KL, Ragoussis, J, Sharpe, PT (1999) Molecular cloning, chromosomal mapping, and developmental expression of a novel protein tyrosine phosphatase-like gene. Genomics 62: pp. 406-416
    111. Li, D, Gonzalez, O, Bachinski, LL, Roberts, R (2000) Human protein tyrosine phosphatase-like gene: expression profile, genomic structure, and mutation analysis in families with ARVD. Gene 256: pp. 237-243
    112. Pele, M, Tiret, L, Kessler, JL, Blot, S, Panthier, JJ (2005) SINE exonic insertion in the PTPLA gene leads to multiple splicing defects and segregates with the autosomal recessive centronuclear myopathy in dogs. Hum Mol Genet 14: pp. 1417-1427
    113. Bellec, Y, Harrar, Y, Butaeye, C, Darnet, S, Bellini, C, Faure, JD (2002) Pasticcino2 is a protein tyrosine phosphatase-like involved in cell proliferation and differentiation in Arabidopsis. Plant J 32: pp. 713-722
    114. Lu, F, Jiang, H, Ding, J, Mu, J, Valenzuela, JG, Ribeiro, JM, Su, XZ (2007) cDNA sequences reveal considerable gene prediction inaccuracy in the Plasmodium falciparum genome. BMC Genomics 8: pp. 255
    115. Foth, BJ, Ralph, SA, Tonkin, CJ, Struck, NS, Fraunholz, M, Roos, DS, Cowman, AF, McFadden, GI (2003) Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science 299: pp. 705-708
    116. Claros, MG, Vincens, P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241: pp. 779-786
    117. Bender, A, van Dooren, GG, Ralph, SA, McFadden, GI, Schneider, G (2003) Properties and prediction of mitochondrial transit peptides from Plasmodium falciparum. Mol Biochem Parasitol 132: pp. 59-66
    118. Larkin, MA, Blackshields, G, Brown, NP, Chenna, R, McGettigan, PA, McWilliam, H, Valentin, F, Wallace, IM, Wilm, A, Lopez, R, Thompson, JD, Gibson, TJ, Higgins, DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: pp. 2947-2948
    119. Edgar, RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: pp. 1792-1797
    120. Tamura, K, Peterson, D, Peterson, N, Stecher, G, Nei, M, Kumar, S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: pp. 2731-2739
    121. Yamamoto, Y, Aiba, H, Baba, T, Hayashi, K, Inada, T, Isono, K, Itoh, T, Kimura, S, Kitagawa, M, Makino, K, Miki, T, Mitsuhashi, N, Mizobuchi, K, Mori, H, Nakade, S, Nakamura, Y, Nashimoto, H, Oshima, T, Oyama, S, Saito, N, Sampei, G, Satoh, Y, Sivasundaram, S, Tagami, H, Horiuchi, T (1997) Construction of a contiguous 874-kb sequence of the Escherichia coli -K12 genome corresponding to 50.0-68.8 min on the linkage map and analysis of its sequence features. DNA Res 4: pp. 91-113
    122. Gokhale, NA, Zaremba, A, Shears, SB (2011) Receptor-dependent compartmentalization of PPIP5K1, a kinase with a cryptic polyphosphoinositide binding domain. Biochem J 434: pp. 415-426
    123. Aurrecoechea, C, Brestelli, J, Brunk, BP, Fischer, S, Gajria, B, Gao, X, Gingle, A, Grant, G, Harb, OS, Heiges, M, Innamorato, F, Iodice, J, Kissinger, JC, Kraemer, ET, Li, W, Miller, JA, Nayak, V, Pennington, C, Pinney, DF, Roos, DS, Ross, C, Srinivasamoorthy, G, Stoeckert, CJ, Thibodeau, R, Treatman, C, Wang, H (2009) EuPathDB: a portal to eukaryotic pathogen databases. Nucleic Acids Res 38: pp. D415-D419
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Eukaryotic cellular machineries are intricately regulated by several molecular mechanisms involving transcriptional control, post-translational control and post-translational modifications of proteins (PTMs). Reversible protein phosphorylation/dephosphorylation process, which involves kinases as well as phosphatases, represents an important regulatory mechanism for diverse pathways and systems in all organisms including human malaria parasite, Plasmodium falciparum. Earlier analysis on P. falciparum protein-phosphatome revealed presence of 34 phosphatases in Plasmodium genome. Recently, we re-analysed P. falciparum phosphatome aimed at identifying parasite specific phosphatases. Results Plasmodium database (PlasmoDB 9.2) search, combined with PFAM and CDD searches, revealed 67 candidate phosphatases in P. falciparum. While this number is far less than the number of phosphatases present in Homo sapiens, it is almost the same as in other Plasmodium species. These Plasmodium phosphatase proteins were classified into 13 super families based on NCBI CDD search. Analysis of proteins expression profiles of the 67 phosphatases revealed that 44 phosphatases are expressed in both schizont as well as gametocytes stages. Fourteen phosphatases are common in schizont, ring and trophozoite stages, four phosphatases are restricted to gametocytes, whereas another three restricted to schizont stage. The phylogenetic trees for each of the known phosphatase super families reveal a considerable phylogenetic closeness amongst apicomplexan organisms and a considerable phylogenetic distance with other eukaryotic model organisms included in the study. The GO assignments and predicted interaction partners of the parasite phosphatases indicate its important role in diverse cellular processes. Conclusion In the study presented here, we reviewed the P. falciparum phosphatome to show presence of 67 candidate phosphatases in P. falciparum genomes/proteomes. Intriguingly, amongst these phosphatases, we could identify six Plasmodium specific phosphatases and 33 putative phosphatases that do not have human orthologs, thereby suggesting that these phosphatases have the potential to be explored as novel antimalarial drug targets.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700