Annealed Scaling for a Charged Polymer
详细信息    查看全文
  • 作者:F. Caravenna ; F. den Hollander ; N. Pétrélis…
  • 关键词:Charged polymer ; Quenched vs. annealed free energy ; Large deviations ; Phase transition ; Ballistic vs. subballistic phase ; Scaling ; 60K37 ; 82B41 ; 82B44
  • 刊名:Mathematical Physics, Analysis and Geometry
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:19
  • 期:1
  • 全文大小:2,279 KB
  • 参考文献:1.Asselah, A.: Annealed lower tails for the energy of a charged polymer. J. Stat. Phys. 138, 619–644 (2010)CrossRef ADS MathSciNet MATH
    2.Asselah, A.: Annealed upper tails for the energy of a charged polymer. Ann. Inst. Henri Poincaré Probab. Stat. 47, 80–110 (2011)CrossRef ADS MathSciNet MATH
    3.Attouch, H.: Variational convergence for functions and operators. Pitman, Boston (1984)MATH
    4.Baillon, J.-B., Clément, Ph., Greven, A., den Hollander, F.: On a variational problem for an infinite particle system in a random medium. J. reine angew. Math. 454, 181–217 (1994)MathSciNet MATH
    5.Berger, Q., den Hollander, F., Poisat, J.: Annealed scaling for a charged polymer in dimensions two and higher, manuscript in preparation
    6.Biskup, M., König, W.: Long-time tails for the parabolic Anderson model with bounded potential. Ann. Probab. 29, 636–682 (2001)CrossRef MathSciNet MATH
    7.Chen, X.: Limit laws for the energy of a charged polymer. Ann. Inst. Henri Poincaré Probab. Stat. 44, 638–672 (2008)CrossRef ADS MATH
    8.Chen, X., Khoshnevisan, D.: From charged polymers to random walk in random scenery. In: OptiMality, IMS Lecture Notes Monogr. Ser. 57, Inst. Math. Statist., Beachwood, OH, pp 237–251 (2009)
    9.Chung, K.L.: Markov chains with stationary transition probabilities. Springer, Berlin (1967)MATH
    10.Coddington, E.A., Levinson, N.: Theory of ordinary differential equations. McGraw-Hill, New York (1955)MATH
    11.Crandall, M.G., Rabinowitz, P.H.: Bifurcation, perturbation of simple eigenvalues, and linearized stability. Arch. Rat. Mech. Anal. 52, 161–180 (1973)CrossRef MathSciNet MATH
    12.Derrida, B., Griffiths, R.B., Higgs, P.G.: A model of directed random walks with random self-interactions. Europhys. Lett. 18, 361–366 (1992)CrossRef ADS
    13.Derrida, B., Higgs, P.G.: Low-temperature properties of directed random walks with random self-intersections. J. Phys. A: Math. Gen. 27, 5485–5493 (1994)CrossRef ADS MathSciNet MATH
    14.Dunford, N., Schwartz, J.T.: Linear Operators. Interscience publishers Inc., New York (1964)
    15.Durrett, R.: Probability, Theory and Examples, (4th. ed.) Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge (2010)CrossRef MATH
    16.Feller, W.: An introduction to probability theory and its applications, 1, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc. (1971)
    17.Feller, W.: An introduction to probability theory and its applications, 2, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc. (1966)
    18.Greven, A., den Hollander, F.: A variational characterization of the speed of a one-dimensional self-repellent random walk. Ann. Appl. Probab 3, 1067–1099 (1993)CrossRef MathSciNet MATH
    19.Guillotin-Plantard, N., dos Santos, R.: The quenched limiting distributions of a charged-polymer model in one and two dimensions, available on arxiv:1312.​0751
    20.Hammersley, J.M.: Generalization of the fundamental theorem on sub-additive functions. Math. Proc. Cambridge Philos. Soc 58, 235–238 (1962)CrossRef ADS MathSciNet MATH
    21.Hofstad, R., Hollander, F.: Van der Scaling for a random polymer. Commun. Math. Phys 169, 397–440 (1995)CrossRef ADS MATH
    22.van der Hofstad, R., Hollander, F., König, W.: Central limit theorem for a weakly interacting random polymer. Markov Proc. Relat. Fields 3, 1–62 (1997)
    23.van der Hofstad, R., Hollander, F., König, W.: Central limit theorem for the Edwards model. Ann. Probab. 25, 573–597 (1997)
    24.van der Hofstad, R., Hollander, F., König W.: Large deviations for the one-dimensional Edwards model. Ann. Probab. 31, 2003–2039 (2003)
    25.den Hollander, F.: Large deviations fields institute monographs, vol. 14. American Mathematical Society, Providence RI (2000)
    26.Hollander, F.: Random Polymers, Lecture Notes in Mathematics, 2009 (1976)
    27.Hu, Y., Khoshnevisan, D.: Strong approximations in a charged-polymer model. Period. Math. Hungar. 61, 213–224 (2010)CrossRef MathSciNet MATH
    28.Hu, Y., Khoshnevisan, D., Wouts, M.: Charged polymers in the attractive regime: a first-order transition from Brownian scaling to four-point localization. J. Stat. Phys. 144, 948–977 (2011)CrossRef ADS MathSciNet MATH
    29.Ioffe , D., Velenik, Y.: Self-attractive random walks: The case of critical drifts. Commun. Math. Phys. 313, 209–235 (2012)CrossRef ADS MathSciNet MATH
    30.Kantor, Y., Kardar, M.: Polymers with random self-interactions. Europhys. Lett. 14, 421–426 (1991)CrossRef ADS
    31.Kato, T.: Perturbation Theory for Linear Operators, Classics in mathematics. Springer, Berlin (1995)
    32.Knight, F.B.: Random walks and a sojourn density process of Brownian motion. Transactions of the AMS 109, 56–86 (1963)CrossRef MATH
    33.König, W.: A central limit theorem for a one-dimensional polymer measure. Ann. Probab. 24, 1012–1035 (1996)CrossRef MathSciNet MATH
    34.Kosygina, E., Mountford, T.: Crossing velocities for an annealed random walk in a random potential. Stoch. Proc. Appl 122, 277–304 (2012)CrossRef MathSciNet MATH
    35.Ney, P.: A refinement of the coupling method in renewal theory. Stoch. Proc. Appl. 11, 11–26 (1981)CrossRef MathSciNet MATH
    36.Petrov, V.: Sums of independent random variables springer (1975)
    37.Revuz, D., Yor, M.: Continuous martingales and brownian motion, Third Edition. Springer, Berlin (1999)CrossRef MATH
    38.Spitzer, F.: Principles of Random Walk, 2nd. ed. Springer, New York (1976)CrossRef MATH
    39.Toth, B.: The “true” self-avoiding walk with bond repulsion on ℤ: limit theorems. Ann. Probab. 23, 1523–1556 (1995)CrossRef MathSciNet MATH
    40.Toth, B.: Generalized Ray-Knight theory and limit theorems for self-interacting random walks on ℤ 1. Ann. Probab. 24, 1324–1367 (1996)CrossRef MathSciNet MATH
    41.Zerner, M.: Quelques propriétés spectrales des opérateurs positifs. J. Funct. Anal. 72, 381–417 (1987)CrossRef MathSciNet MATH
  • 作者单位:F. Caravenna (1)
    F. den Hollander (2)
    N. Pétrélis (3)
    J. Poisat (4)

    1. Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, via Cozzi 55, 20125, Milano, Italy
    2. Mathematical Institute, Leiden University, P.O. Box 9512, 2300, RA, Leiden, The Netherlands
    3. Laboratoire de Mathématiques Jean Leray UMR 6629, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322, Nantes Cedex 03, France
    4. CEREMADE, UMR 7534, Université Paris-Dauphine, PSL Research University, Place du Maréchal de Lattre de Tassigny, 75775, Paris Cedex 16, France
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mathematical and Computational Physics
    Analysis
    Geometry
    Group Theory and Generalizations
    Applications of Mathematics
  • 出版者:Springer Netherlands
  • ISSN:1572-9656
文摘
This paper studies an undirected polymer chain living on the one-dimensional integer lattice and carrying i.i.d. random charges. Each self-intersection of the polymer chain contributes to the interaction Hamiltonian an energy that is equal to the product of the charges of the two monomers that meet. The joint probability distribution for the polymer chain and the charges is given by the Gibbs distribution associated with the interaction Hamiltonian. The focus is on the annealed free energy per monomer in the limit as the length of the polymer chain tends to infinity. We derive a spectral representation for the free energy and use this to prove that there is a critical curve in the parameter plane of charge bias versus inverse temperature separating a ballistic phase from a subballistic phase. We show that the phase transition is first order. We prove large deviation principles for the laws of the empirical speed and the empirical charge, and derive a spectral representation for the associated rate functions. Interestingly, in both phases both rate functions exhibit flat pieces, which correspond to an inhomogeneous strategy for the polymer to realise a large deviation. The large deviation principles in turn lead to laws of large numbers and central limit theorems. We identify the scaling behaviour of the critical curve for small and for large charge bias. In addition, we identify the scaling behaviour of the free energy for small charge bias and small inverse temperature. Both are linked to an associated Sturm-Liouville eigenvalue problem. A key tool in our analysis is the Ray-Knight formula for the local times of the one-dimensional simple random walk. This formula is exploited to derive a closed form expression for the generating function of the annealed partition function, and for several related quantities. This expression in turn serves as the starting point for the derivation of the spectral representation for the free energy, and for the scaling theorems. What happens for the quenched free energy per monomer remains open. We state two modest results and raise a few questions. Keywords Charged polymer Quenched vs. annealed free energy Large deviations Phase transition Ballistic vs. subballistic phase Scaling

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700