New frontiers for platelet CD154
详细信息    查看全文
  • 作者:Antoine Dewitte (1) (4)
    Annabelle Tanga (1)
    Julien Villeneuve (2) (3)
    S茅bastien Lepreux (1)
    Alexandre Ouattara (4)
    Alexis Desmouli猫re (5)
    Christian Combe (1) (6)
    Jean Ripoche (1)

    1. INSERM U1026
    ; and Universit茅 de Bordeaux ; F-33000 ; Bordeaux ; France
    4. Service d鈥橝nesth茅sie-R茅animation II
    ; CHU de Bordeaux ; F-33600 ; Pessac ; France
    2. Cell and Developmental Biology Programme
    ; Centre for Genomic Regulation ; 08003 ; Barcelona ; Spain
    3. Department of Molecular and Cell Biology
    ; Howard Hughes Medical Institute ; University of California ; Berkeley ; CA ; 94720-3200 ; USA
    5. EA 6309
    ; University of Limoges ; F-87025 ; Limoges ; France
    6. Service de N茅phrologie Transplantation Dialyse
    ; CHU de Bordeaux ; F-33076 ; Bordeaux ; France
  • 关键词:Platelets ; CD154
  • 刊名:Experimental Hematology & Oncology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:4
  • 期:1
  • 全文大小:1,298 KB
  • 参考文献:1. Kaushansky, K (2005) The molecular mechanisms that control thrombopoiesis. J Clin Invest 115: pp. 3339-3347
    2. Thon, JN, Italiano, JE (2010) Platelet formation. Semin Hematol 47: pp. 220-226
    3. Machlus, KR, Italiano, JE (2013) The incredible journey: From megakaryocyte development to platelet formation. J Cell Biol 201: pp. 785-796
    4. Schmaier, AA, Stalker, TJ, Runge, JJ, Lee, D, Nagaswami, C, Mericko, P (2011) Occlusive thrombi arise in mammals but not birds in response to arterial injury: evolutionary insight into human cardiovascular disease. Blood 118: pp. 3661-3669
    5. Weyrich, AS, Lindemann, S, Zimmerman, GA (2003) The evolving role of platelets in inflammation. J Thromb Haemost 1: pp. 1897-1905
    6. Semple, JW, Italiano, JE, Freedman, J (2011) Platelets and the immune continuum. Nat Rev Immunol 11: pp. 264-274
    7. Grozovsky, R, Hoffmeister, KM, Falet, H (2010) Novel clearance mechanisms of platelets. Curr Opin Hematol 17: pp. 585-589
    8. Coller, BS (2011) Historical perspective and future directions in platelet research. J Thromb Haemost 9: pp. 374-395
    9. Grewal, IS, Flavell, RA (1998) CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol 16: pp. 111-135
    10. Kooten, C, Banchereau, J (2000) CD40-CD40 ligand. J Leukoc Biol 67: pp. 2-17
    11. Howard, LM, Miller, SD (2004) Immunotherapy targeting the CD40/CD154 costimulatory pathway for treatment of autoimmune disease. Autoimmunity 37: pp. 411-418
    12. Toubi, E, Shoenfeld, Y (2004) The role of CD40-CD154 interactions in autoimmunity and the benefit of disrupting this pathway. Autoimmunity 37: pp. 457-464
    13. Law, CL, Grewal, IS (2009) Therapeutic interventions targeting CD40L (CD154) and CD40: the opportunities and challenges. Adv Exp Med Biol 647: pp. 8-36
    14. Peters, AL, Stunz, LL, Bishop, GA (2009) CD40 and autoimmunity: the dark side of a great activator. Semin Immunol 21: pp. 293-300
    15. Alaaeddine, N, Hassan, GS, Yacoub, D, Mourad, W (2012) CD154: an immunoinflammatory mediator in systemic lupus erythematosus and rheumatoid arthritis. Clin Dev Immunol 2012: pp. 490148
    16. Hollenbaugh, D, Mischel-Petty, N, Edwards, CP, Simon, JC, Denfeld, RW, Kiener, PA (1995) Expression of functional CD40 by vascular endothelial cells. J Exp Med 182: pp. 33-40
    17. Karmann, K, Hughes, CC, Schechner, J, Fanslow, WC, Pober, JS (1995) CD40 on human endothelial cells: inducibility by cytokines and functional regulation of adhesion molecule expression. Proc Natl Acad Sci U S A 92: pp. 4342-4346
    18. Yellin, MJ, Brett, J, Baum, D, Matsushima, A, Szabolcs, M, Stern, D (1995) Functional interactions of T cells with endothelial cells: the role of CD40L-CD40-mediated signals. J Exp Med 182: pp. 1857-1864
    19. Schonbeck, U, Libby, P (2001) CD40 signaling and plaque instability. Circ Res 89: pp. 1092-1103
    20. Schonbeck, U, Libby, P (2001) The CD40/CD154 receptor/ligand dyad. Cell Mol Life Sci 58: pp. 4-43
    21. Delmas, Y, Viallard, JF, Solanilla, A, Villeneuve, J, Pasquet, JM, Belloc, F (2005) Activation of mesangial cells by platelets in systemic lupus erythematosus via a CD154-dependent induction of CD40. Kidney Int 68: pp. 2068-2078
    22. Andre, P, Prasad, KS, Denis, CV, He, M, Papalia, JM, Hynes, RO (2002) CD40L stabilizes arterial thrombi by a beta3 integrin鈥揹ependent mechanism. Nat Med 8: pp. 247-252
    23. Leveille, C, Bouillon, M, Guo, W, Bolduc, J, Sharif-Askari, E, El-Fakhry, Y (2007) CD40 ligand binds to alpha5beta1 integrin and triggers cell signaling. J Biol Chem 282: pp. 5143-5151
    24. Zirlik, A, Maier, C, Gerdes, N, MacFarlane, L, Soosairajah, J, Bavendiek, U (2007) CD40 ligand mediates inflammation independently of CD40 by interaction with Mac-1. Circulation 115: pp. 1571-1580
    25. Hassan, GS, Merhi, Y, Mourad, WM (2009) CD154 and its receptors in inflammatory vascular pathologies. Trends Immunol 30: pp. 165-172
    26. Graf, D, Muller, S, Korthauer, U, Kooten, C, Weise, C, Kroczek, RA (1995) A soluble form of TRAP (CD40 ligand) is rapidly released after T cell activation. Eur J Immunol 25: pp. 1749-1754
    27. Peitsch, MC, Jongeneel, CV (1993) A 3-D model for the CD40 ligand predicts that it is a compact trimer similar to the tumor necrosis factors. Int Immunol 5: pp. 233-238
    28. Fanslow, WC, Srinivasan, S, Paxton, R, Gibson, MG, Spriggs, MK, Armitage, RJ (1994) Structural characteristics of CD40 ligand that determine biological function. Semin Immunol 6: pp. 267-278
    29. Karpusas, M, Hsu, YM, Wang, JH, Thompson, J, Lederman, S, Chess, L (1995) 2 A crystal structure of an extracellular fragment of human CD40 ligand. Structure 3: pp. 1031-1039
    30. Pietravalle, F, Lecoanet-Henchoz, S, Blasey, H, Aubry, JP, Elson, G, Edgerton, MD (1996) Human native soluble CD40L is a biologically active trimer, processed inside microsomes. J Biol Chem 271: pp. 5965-5967
    31. Bishop, GA, Moore, CR, Xie, P, Stunz, LL, Kraus, ZJ (2007) TRAF proteins in CD40 signaling. Adv Exp Med Biol 597: pp. 131-151
    32. Donners, MM, Beckers, L, Lievens, D, Munnix, I, Heemskerk, J, Janssen, BJ (2008) The CD40-TRAF6 axis is the key regulator of the CD40/CD40L system in neointima formation and arterial remodeling. Blood 111: pp. 4596-4604
    33. Chatzigeorgiou, A, Seijkens, T, Zarzycka, B, Engel, D, Poggi, M, Berg, S (2014) Blocking CD40-TRAF6 signaling is a therapeutic target in obesity-associated insulin resistance. Proc Natl Acad Sci U S A 111: pp. 2686-2691
    34. Horrillo, A, Fontela, T, Arias-Salgado, EG, Llobat, D, Porras, G, Ayuso, MS (2014) Generation of mice with conditional ablation of the Cd40lg gene: new insights on the role of CD40L. Transgenic Res 23: pp. 53-66
    35. Henn, V, Slupsky, JR, Grafe, M, Anagnostopoulos, I, Forster, R, Muller-Berghaus, G (1998) CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391: pp. 591-594
    36. Kamykowski, J, Carlton, P, Sehgal, S, Storrie, B (2011) Quantitative immunofluorescence mapping reveals little functional coclustering of proteins within platelet alpha-granules. Blood 118: pp. 1370-1373
    37. Charafeddine, AH, Kim, EJ, Maynard, DM, Yi, H, Weaver, TA, Gunay-Aygun, M (2012) Platelet-derived CD154: ultrastructural localization and clinical correlation in organ transplantation. Am J Transplant 12: pp. 3143-3151
    38. Hermann, A, Rauch, BH, Braun, M, Schror, K, Weber, AA (2001) Platelet CD40 ligand (CD40L)鈥搒ubcellular localization, regulation of expression, and inhibition by clopidogrel. Platelets 12: pp. 74-82
    39. Denis, MM, Tolley, ND, Bunting, M, Schwertz, H, Jiang, H, Lindemann, S (2005) Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell 122: pp. 379-391
    40. Rowley, JW, Schwertz, H, Weyrich, AS (2012) Platelet mRNA: the meaning behind the message. Curr Opin Hematol 19: pp. 385-391
    41. Reed, GL, Fitzgerald, ML, Polgar, J (2000) Molecular mechanisms of platelet exocytosis: insights into the 鈥渟ecrete鈥?life of thrombocytes. Blood 96: pp. 3334-3342
    42. Jurk, K, Kehrel, BE (2005) Platelets: physiology and biochemistry. Semin Thromb Hemost 31: pp. 381-392
    43. Ren, Q, Ye, S, Whiteheart, SW (2008) The platelet release reaction: just when you thought platelet secretion was simple. Curr Opin Hematol 15: pp. 537-541
    44. Koseoglu, S, Flaumenhaft, R (2013) Advances in platelet granule biology. Curr Opin Hematol 20: pp. 464-471
    45. Wijten, P, Holten, T, Woo, LL, Bleijerveld, OB, Roest, M, Heck, AJ (2013) High precision platelet releasate definition by quantitative reversed protein profiling鈥揵rief report. Arterioscler Thromb Vasc Biol 33: pp. 1635-1638
    46. Golebiewska, EM, Poole, AW (2013) Secrets of platelet exocytosis - what do we really know about platelet secretion mechanisms?. Br J Haematol 165: pp. 204-216
    47. Lindemann, S, Gawaz, M (2007) The active platelet: translation and protein synthesis in an anucleate cell. Semin Thromb Hemost 33: pp. 144-150
    48. Weyrich, AS, Schwertz, H, Kraiss, LW, Zimmerman, GA (2009) Protein synthesis by platelets: historical and new perspectives. J Thromb Haemost 7: pp. 241-246
    49. Aukrust, P, Muller, F, Ueland, T, Berget, T, Aaser, E, Brunsvig, A (1999) Enhanced levels of soluble and membrane-bound CD40 ligand in patients with unstable angina. Possible reflection of T lymphocyte and platelet involvement in the pathogenesis of acute coronary syndromes. Circulation 100: pp. 614-620
    50. Henn, V, Steinbach, S, Buchner, K, Presek, P, Kroczek, RA (2001) The inflammatory action of CD40 ligand (CD154) expressed on activated human platelets is temporally limited by coexpressed CD40. Blood 98: pp. 1047-1054
    51. Jin, Y, Nonoyama, S, Morio, T, Imai, K, Ochs, HD, Mizutani, S (2001) Characterization of soluble CD40 ligand released from human activated platelets. J Med Dent Sci 48: pp. 23-27
    52. Nannizzi-Alaimo, L, Rubenstein, MH, Alves, VL, Leong, GY, Phillips, DR, Gold, HK (2002) Cardiopulmonary bypass induces release of soluble CD40 ligand. Circulation 105: pp. 2849-2854
    53. Otterdal, K, Pedersen, TM, Solum, NO (2004) Release of soluble CD40 ligand after platelet activation: studies on the solubilization phase. Thromb Res 114: pp. 167-177
    54. Furman, MI, Krueger, LA, Linden, MD, Barnard, MR, Frelinger, AL, Michelson, AD (2004) Release of soluble CD40L from platelets is regulated by glycoprotein IIb/IIIa and actin polymerization. J Am Coll Cardiol 43: pp. 2319-2325
    55. Menchen, L, Marin-Jimenez, I, Arias-Salgado, EG, Fontela, T, Hernandez-Sampelayo, P, Rodriguez, MC (2009) Matrix metalloproteinase 9 is involved in Crohn鈥檚 disease-associated platelet hyperactivation through the release of soluble CD40 ligand. Gut 58: pp. 920-928
    56. Reinboldt, S, Wenzel, F, Rauch, BH, Hohlfeld, T, Grandoch, M, Fischer, JW (2009) Preliminary evidence for a matrix metalloproteinase-2 (MMP-2)-dependent shedding of soluble CD40 ligand (sCD40L) from activated platelets. Platelets 20: pp. 441-444
    57. Choi, WS, Jeon, OH, Kim, DS (2010) CD40 ligand shedding is regulated by interaction between matrix metalloproteinase-2 and platelet integrin alpha(IIb)beta(3). J Thromb Haemost 8: pp. 1364-1371
    58. Yacoub, D, Benslimane, N, Al-Zoobi, L, Hassan, G, Nadiri, A, Mourad, W (2013) CD154 Is Released from T-cells by a Disintegrin and Metalloproteinase Domain-containing Protein 10 (ADAM10) and ADAM17 in a CD40 Protein-dependent Manner. J Biol Chem 288: pp. 36083-36093
    59. Nannizzi-Alaimo, L, Alves, VL, Phillips, DR (2003) Inhibitory effects of glycoprotein IIb/IIIa antagonists and aspirin on the release of soluble CD40 ligand during platelet stimulation. Circulation 107: pp. 1123-1128
    60. Pignatelli, P, Sanguigni, V, Lenti, L, Ferro, D, Finocchi, A, Rossi, P (2004) gp91phox-dependent expression of platelet CD40 ligand. Circulation 110: pp. 1326-1329
    61. Mazzei, GJ, Edgerton, MD, Losberger, C, Lecoanet-Henchoz, S, Graber, P, Durandy, A (1995) Recombinant soluble trimeric CD40 ligand is biologically active. J Biol Chem 270: pp. 7025-7028
    62. Anand, SX, Viles-Gonzalez, JF, Badimon, JJ, Cavusoglu, E, Marmur, JD (2003) Membrane-associated CD40L and sCD40L in atherothrombotic disease. Thromb Haemost 90: pp. 377-384
    63. Sprague, DL, Elzey, BD, Crist, SA, Waldschmidt, TJ, Jensen, RJ, Ratliff, TL (2008) Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles. Blood 111: pp. 5028-5036
    64. Inwald, DP, McDowall, A, Peters, MJ, Callard, RE, Klein, NJ (2003) CD40 is constitutively expressed on platelets and provides a novel mechanism for platelet activation. Circ Res 92: pp. 1041-1048
    65. Prasad, KS, Andre, P, He, M, Bao, M, Manganello, J, Phillips, DR (2003) Soluble CD40 ligand induces beta3 integrin tyrosine phosphorylation and triggers platelet activation by outside-in signaling. Proc Natl Acad Sci U S A 100: pp. 12367-12371
    66. King, SM, Reed, GL (2002) Development of platelet secretory granules. Semin Cell Dev Biol 13: pp. 293-302
    67. Schulze, H, Shivdasani, RA (2005) Mechanisms of thrombopoiesis. J Thromb Haemost 3: pp. 1717-1724
    68. Solanilla, A, Pasquet, JM, Viallard, JF, Contin, C, Grosset, C, Dechanet-Merville, J (2005) Platelet-associated CD154 in immune thrombocytopenic purpura. Blood 105: pp. 215-218
    69. Crist, SA, Sprague, DL, Ratliff, TL (2008) Nuclear factor of activated T cells (NFAT) mediates CD154 expression in megakaryocytes. Blood 111: pp. 3553-3561
    70. Crist, SA, Elzey, BD, Ahmann, MT, Ratliff, TL (2013) Early growth response-1 (EGR-1) and nuclear factor of activated T cells (NFAT) cooperate to mediate CD40L expression in megakaryocytes and platelets. J Biol Chem 288: pp. 33985-33996
    71. Weyrich, AS, Dixon, DA, Pabla, R, Elstad, MR, McIntyre, TM, Prescott, SM (1998) Signal-dependent translation of a regulatory protein, Bcl-3, in activated human platelets. Proc Natl Acad Sci U S A 95: pp. 5556-5561
    72. Maguire, PB, Fitzgerald, DJ (2003) Platelet proteomics. J Thromb Haemost 1: pp. 1593-1601
    73. Gnatenko, DV, Perrotta, PL, Bahou, WF (2006) Proteomic approaches to dissect platelet function: Half the story. Blood 108: pp. 3983-3991
    74. Andre, P, Nannizzi-Alaimo, L, Prasad, SK, Phillips, DR (2002) Platelet-derived CD40L: the switch-hitting player of cardiovascular disease. Circulation 106: pp. 896-899
    75. Viallard, JF, Solanilla, A, Gauthier, B, Contin, C, Dechanet, J, Grosset, C (2002) Increased soluble and platelet-associated CD40 ligand in essential thrombocythemia and reactive thrombocytosis. Blood 99: pp. 2612-2614
    76. Nagasawa, M, Zhu, Y, Isoda, T, Tomizawa, D, Itoh, S, Kajiwara, M (2005) Analysis of serum soluble CD40 ligand (sCD40L) in the patients undergoing allogeneic stem cell transplantation: platelet is a major source of serum sCD40L. Eur J Haematol 74: pp. 54-60
    77. Feng, X, Scheinberg, P, Wu, CO, Samsel, L, Nunez, O, Prince, C (2011) Cytokine signature profiles in acquired aplastic anemia and myelodysplastic syndromes. Haematologica 96: pp. 602-606
    78. Feng, X, Scheinberg, P, Samsel, L, Rios, O, Chen, J, McCoy, JP (2012) Decreased plasma cytokines are associated with low platelet counts in aplastic anemia and immune thrombocytopenic purpura. J Thromb Haemost 10: pp. 1616-1623
    79. Fan, Y, Ge, Y, Zhu, H, Wang, Y, Yang, B, Zhuang, Y (2004) Characterization and application of two novel monoclonal antibodies against CD40L: epitope and functional studies on cell membrane CD40L and studies on the origin of soluble serum CD40L. Tissue Antigens 64: pp. 257-263
    80. Mason, PJ, Chakrabarti, S, Albers, AA, Rex, S, Vitseva, O, Varghese, S (2005) Plasma, serum, and platelet expression of CD40 ligand in adults with cardiovascular disease. Am J Cardiol 96: pp. 1365-1369
    81. Cipollone, F, Mezzetti, A, Porreca, E, Febbo, C, Nutini, M, Fazia, M (2002) Association between enhanced soluble CD40L and prothrombotic state in hypercholesterolemia: effects of statin therapy. Circulation 106: pp. 399-402
    82. Riondino, S, Martini, F, Farina, F, Spila, A, Guadagni, F, Ferroni, P (2010) Increased plasma levels of soluble CD40 ligand correlate with platelet activation markers and underline the need for standardized pre-analytical conditions. Clin Biochem 43: pp. 666-670
    83. Burdess, A, Michelsen, AE, Brosstad, F, Fox, KA, Newby, DE, Nimmo, AF (2012) Platelet activation in patients with peripheral vascular disease: reproducibility and comparability of platelet markers. Thromb Res 129: pp. 50-55
    84. Ahn, ER, Lander, G, Jy, W, Bidot, CJ, Jimenez, JJ, Horstman, LL (2004) Differences of soluble CD40L in sera and plasma: implications on CD40L assay as a marker of thrombotic risk. Thromb Res 114: pp. 143-148
    85. Thom, J, Gilmore, G, Yi, Q, Hankey, GJ, Eikelboom, JW (2004) Measurement of soluble P-selectin and soluble CD40 ligand in serum and plasma. J Thromb Haemost 2: pp. 2067-2069
    86. Varo, N, Nuzzo, R, Natal, C, Libby, P, Schonbeck, U (2006) Influence of pre-analytical and analytical factors on soluble CD40L measurements. Clin Sci (Lond) 111: pp. 341-347
    87. Weber, M, Rabenau, B, Stanisch, M, Elsaesser, A, Mitrovic, V, Heeschen, C (2006) Influence of sample type and storage conditions on soluble CD40 ligand assessment. Clin Chem 52: pp. 888-891
    88. Weber, M, Rabenau, B, Stanisch, M, Nef, HM, Mollmann, H, Elsasser, A (2007) Influence of sample type on soluble CD40 ligand assessment in patients with acute coronary syndromes. Thromb Res 120: pp. 811-814
    89. Ivandic, BT, Spanuth, E, Haase, D, Lestin, HG, Katus, HA (2007) Increased plasma concentrations of soluble CD40 ligand in acute coronary syndrome depend on in vitro platelet activation. Clin Chem 53: pp. 1231-1234
    90. Mobarrez F, Sjovik C, Soop A, Hallstrom L, Frostell C, Pisetsky DS et al. CD40L expression in plasma of volunteers following LPS administration: A comparison between assay of CD40L on platelet microvesicles and soluble CD40L. Platelets. 2014:1鈥?. [Epub ahead of print]
    91. Schonbeck, U, Gerdes, N, Varo, N, Reynolds, RS, Horton, DB, Bavendiek, U (2002) Oxidized low-density lipoprotein augments and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors limit CD40 and CD40L expression in human vascular cells. Circulation 106: pp. 2888-2893
    92. Semb, AG, Wissen, S, Ueland, T, Smilde, T, Waehre, T, Tripp, MD (2003) Raised serum levels of soluble CD40 ligand in patients with familial hypercholesterolemia: downregulatory effect of statin therapy. J Am Coll Cardiol 41: pp. 275-279
    93. Li, J, Zhao, SP, Peng, DQ, Xu, ZM, Zhou, HN (2004) Early effect of pravastatin on serum soluble CD40L, matrix metalloproteinase-9, and C-reactive protein in patients with acute myocardial infarction. Clin Chem 50: pp. 1696-1699
    94. Tamura, N, Yoshida, M, Ichikawa, N, Handa, M, Ikeda, Y, Tanabe, T (2002) Shear-induced von Willebrand factor-mediated platelet surface translocation of the CD40 ligand. Thromb Res 108: pp. 311-315
    95. Heijnen, HF, Schiel, AE, Fijnheer, R, Geuze, HJ, Sixma, JJ (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94: pp. 3791-3799
    96. Baj-Krzyworzeka, M, Majka, M, Pratico, D, Ratajczak, J, Vilaire, G, Kijowski, J (2002) Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp Hematol 30: pp. 450-459
    97. May, AE, K盲lsch, T, Massberg, S, Herouy, Y, Schmidt, R, Gawaz, M (2002) Engagement of glycoprotein IIb/IIIa (aIIbb3) on platelets upregulates CD40L and triggers CD40L-dependent matrix degradation by endothelial cells. Circulation 106: pp. 2111-2117
    98. Gear, AR, Camerini, D (2003) Platelet chemokines and chemokine receptors: linking hemostasis, inflammation, and host defense. Microcirculation 10: pp. 335-350
    99. Dechanet, J, Grosset, C, Taupin, JL, Merville, P, Banchereau, J, Ripoche, J (1997) CD40 ligand stimulates proinflammatory cytokine production by human endothelial cells. J Immunol 159: pp. 5640-5647
    100. Gawaz, M, Langer, H, May, AE (2005) Platelets in inflammation and atherogenesis. J Clin Invest 115: pp. 3378-3384
    101. Davi, G, Patrono, C (2007) Platelet activation and atherothrombosis. N Engl J Med 357: pp. 2482-2494
    102. Projahn, D, Koenen, RR (2012) Platelets: key players in vascular inflammation. J Leukoc Biol 92: pp. 1167-1175
    103. Rondina, MT, Weyrich, AS, Zimmerman, GA (2013) Platelets as cellular effectors of inflammation in vascular diseases. Circ Res 112: pp. 1506-1519
    104. Mach, F, Schonbeck, U, Libby, P (1998) CD40 signaling in vascular cells: a key role in atherosclerosis?. Atherosclerosis 137: pp. S89-S95
    105. Mach, F, Schonbeck, U, Sukhova, GK, Atkinson, E, Libby, P (1998) Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 394: pp. 200-203
    106. Danese, S, Fiocchi, C (2005) Platelet activation and the CD40/CD40 ligand pathway: mechanisms and implications for human disease. Crit Rev Immunol 25: pp. 103-121
    107. Antoniades, C, Bakogiannis, C, Tousoulis, D, Antonopoulos, AS, Stefanadis, C (2009) The CD40/CD40 ligand system: linking inflammation with atherothrombosis. J Am Coll Cardiol 54: pp. 669-677
    108. Lievens, D, Eijgelaar, WJ, Biessen, EA, Daemen, MJ, Lutgens, E (2009) The multi-functionality of CD40L and its receptor CD40 in atherosclerosis. Thromb Haemost 102: pp. 206-214
    109. Lievens, D, Zernecke, A, Seijkens, T, Soehnlein, O, Beckers, L, Munnix, IC (2010) Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood 116: pp. 4317-4327
    110. Czapiga, M, Gao, JL, Kirk, A, Lekstrom-Himes, J (2005) Human platelets exhibit chemotaxis using functional N-formyl peptide receptors. Exp Hematol 33: pp. 73-84
    111. Kiener, PA, Moran-Davis, P, Rankin, BM, Wahl, AF, Aruffo, A, Hollenbaugh, D (1995) Stimulation of CD40 with purified soluble gp39 induces proinflammatory responses in human monocytes. J Immunol 155: pp. 4917-4925
    112. Danese, S, Motte, C, Sturm, A, Vogel, JD, West, GA, Strong, SA (2003) Platelets trigger a CD40-dependent inflammatory response in the microvasculature of inflammatory bowel disease patients. Gastroenterology 124: pp. 1249-1264
    113. Kornerup, KN, Page, CP (2007) The role of platelets in the pathophysiology of asthma. Platelets 18: pp. 319-328
    114. Tabuchi, A, Kuebler, WM (2008) Endothelium-platelet interactions in inflammatory lung disease. Vascul Pharmacol 49: pp. 141-150
    115. Yoshida, H, Granger, DN (2009) Inflammatory bowel disease: a paradigm for the link between coagulation and inflammation. Inflamm Bowel Dis 15: pp. 1245-1255
    116. Ripoche, J (2011) Blood platelets and inflammation: their relationship with liver and digestive diseases. Clin Res Hepatol Gastroenterol 35: pp. 353-357
    117. Boilard, E, Blanco, P, Nigrovic, PA (2012) Platelets: active players in the pathogenesis of arthritis and SLE. Nat Rev Rheumatol 8: pp. 534-542
    118. Santilli, F, Vazzana, N, Liani, R, Guagnano, MT, Davi, G (2012) Platelet activation in obesity and metabolic syndrome. Obes Rev 13: pp. 27-42
    119. Gasparyan, AY, Ayvazyan, L, Pretorius, E, Kitas, GD (2014) Platelets in Rheumatic Diseases: Friend or Foe?. Curr Pharm Des 20: pp. 552-566
    120. Langer, HF, Chavakis, T (2013) Platelets and neurovascular inflammation. Thromb Haemost 110: pp. 888-893
    121. Kato, K, Santana-Sahag霉n, E, Rassenti, LZ, Weisman, MH, Tamura, N, Kobayashi, S (1999) The soluble CD40 ligand sCD154 in systemic lupus erythematosus. J Clin Invest 104: pp. 947-955
    122. Diamant, M, Tushuizen, ME, Sturk, A, Nieuwland, R (2004) Cellular microparticles: new players in the field of vascular disease?. Eur J Clin Invest 34: pp. 392-401
    123. Tan, KT, Lip, GY (2005) The potential role of platelet microparticles in atherosclerosis. Thromb Haemost 94: pp. 488-492
    124. Varon, D, Shai, E (2009) Role of platelet-derived microparticles in angiogenesis and tumor progression. Discov Med 8: pp. 237-241
    125. Boilard, E, Nigrovic, PA, Larabee, K, Watts, GF, Coblyn, JS, Weinblatt, ME (2010) Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327: pp. 580-583
    126. Shantsila, E, Kamphuisen, PW, Lip, GY (2010) Circulating microparticles in cardiovascular disease: implications for atherogenesis and atherothrombosis. J Thromb Haemost 8: pp. 2358-2368
    127. Burger, D, Schock, S, Thompson, CS, Montezano, AC, Hakim, AM, Touyz, RM (2013) Microparticles: biomarkers and beyond. Clin Sci (Lond) 124: pp. 423-441
    128. Burnouf, T, Goubran, HA, Chou, ML, Devos, D, Radosevic, M (2014) Platelet microparticles: detection and assessment of their paradoxical functional roles in disease and regenerative medicine. Blood Rev 28: pp. 155-166
    129. Nathan, C (2002) Points of control in inflammation. Nature 420: pp. 846-852
    130. Barton, GM (2008) A calculated response: control of inflammation by the innate immune system. J Clin Invest 118: pp. 413-420
    131. Medzhitov, R (2008) Origin and physiological roles of inflammation. Nature 454: pp. 428-435
    132. Serhan, CN, Savill, J (2005) Resolution of inflammation: the beginning programs the end. Nat Immunol 6: pp. 1191-1197
    133. Gurtner, GC, Werner, S, Barrandon, Y, Longaker, MT (2008) Wound repair and regeneration. Nature 453: pp. 314-321
    134. Nurden, AT (2011) Platelets, inflammation and tissue regeneration. Thromb Haemost 105: pp. S13-S33
    135. Gawaz, M, Vogel, S (2013) Platelets in tissue repair: control of apoptosis and interactions with regenerative cells. Blood 122: pp. 2550-2554
    136. Ho-Tin-Noe, B, Demers, M, Wagner, DD (2011) How platelets safeguard vascular integrity. J Thromb Haemost 9: pp. 56-65
    137. Verheul, HM, Jorna, AS, Hoekman, K, Broxterman, HJ, Gebbink, MF, Pinedo, HM (2000) Vascular endothelial growth factor-stimulated endothelial cells promote adhesion and activation of platelets. Blood 96: pp. 4216-4221
    138. Brill, A, Elinav, H, Varon, D (2004) Differential role of platelet granular mediators in angiogenesis. Cardiovasc Res 63: pp. 226-235
    139. Klement, GL, Yip, TT, Cassiola, F, Kikuchi, L, Cervi, D, Podust, V (2009) Platelets actively sequester angiogenesis regulators. Blood 113: pp. 2835-2842
    140. Lesurtel, M, Graf, R, Aleil, B, Walther, DJ, Tian, Y, Jochum, W (2006) Platelet-derived serotonin mediates liver regeneration. Science 312: pp. 104-107
    141. Markiewski, MM, DeAngelis, RA, Lambris, JD (2006) Liver inflammation and regeneration: two distinct biological phenomena or parallel pathophysiologic processes?. Mol Immunol 43: pp. 45-56
    142. Nocito, A, Georgiev, P, Dahm, F, Jochum, W, Bader, M, Graf, R (2007) Platelets and platelet-derived serotonin promote tissue repair after normothermic hepatic ischemia in mice. Hepatology 45: pp. 369-376
    143. Doukas, J, Blease, K, Craig, D, Ma, C, Chandler, LA, Sosnowski, BA (2002) Delivery of FGF genes to wound repair cells enhances arteriogenesis and myogenesis in skeletal muscle. Mol Ther 5: pp. 517-527
    144. Norazit, A, Nguyen, MN, Dickson, CG, Tuxworth, G, Goss, B, Mackay-Sim, A (2011) Vascular endothelial growth factor and platelet derived growth factor modulates the glial response to a cortical stab injury. Neuroscience 192: pp. 652-660
    145. Kim, HK, Song, KS, Chung, JH, Lee, KR, Lee, SN (2004) Platelet microparticles induce angiogenesis in vitro. Br J Haematol 124: pp. 376-384
    146. Brill, A, Dashevsky, O, Rivo, J, Gozal, Y, Varon, D (2005) Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc Res 67: pp. 30-38
    147. Italiano, JE, Mairuhu, AT, Flaumenhaft, R (2010) Clinical relevance of microparticles from platelets and megakaryocytes. Curr Opin Hematol 17: pp. 578-584
    148. Mause, SF, Ritzel, E, Liehn, EA, Hristov, M, Bidzhekov, K, Muller-Newen, G (2010) Platelet microparticles enhance the vasoregenerative potential of angiogenic early outgrowth cells after vascular injury. Circulation 122: pp. 495-506
    149. Hayon, Y, Shai, E, Varon, D, Leker, RR (2012) The role of platelets and their microparticles in rehabilitation of ischemic brain tissue. CNS Neurol Disord Drug Targets 11: pp. 921-925
    150. Anitua, E, Andia, I, Ardanza, B, Nurden, P, Nurden, AT (2004) Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost 91: pp. 4-15
    151. Langer, HF, Gawaz, M (2008) Platelets in regenerative medicine. Basic Res Cardiol 103: pp. 299-307
    152. Nurden, AT, Nurden, P, Sanchez, M, Andia, I, Anitua, E (2008) Platelets and wound healing. Front Biosci 13: pp. 3532-3548
    153. Burnouf, T, Goubran, HA, Chen, TM, Ou, KL, El-Ekiaby, M, Radosevic, M (2013) Blood-derived biomaterials and platelet growth factors in regenerative medicine. Blood Rev 27: pp. 77-89
    154. Textor, J Platelet-Rich Plasma (PRP) as a Therapeutic Agent: Platelet Biology, Growth Factors and a Review of the Literature. In: Andrade Santana, MH, Dias Belangero, W, Malheiros Luzo, AC eds. (2014) Lana JFSD. Platelet-Rich Plasma. Lecture Notes in Bioengineering, Springer Berlin Heidelberg, pp. 61-94
    155. Mach, F, Schonbeck, U, Fabunmi, RP, Murphy, C, Atkinson, E, Bonnefoy, JY (1999) T lymphocytes induce endothelial cell matrix metalloproteinase expression by a CD40L-dependent mechanism: implications for tubule formation. Am J Pathol 154: pp. 229-238
    156. Melter, M, Reinders, ME, Sho, M, Pal, S, Geehan, C, Denton, MD (2000) Ligation of CD40 induces the expression of vascular endothelial growth factor by endothelial cells and monocytes and promotes angiogenesis in vivo. Blood 96: pp. 3801-3808
    157. Deregibus, MC, Buttiglieri, S, Russo, S, Bussolati, B, Camussi, G (2003) CD40-dependent activation of phosphatidylinositol 3-kinase/Akt pathway mediates endothelial cell survival and in vitro angiogenesis. J Biol Chem 278: pp. 18008-18014
    158. Li, G, Sanders, JM, Bevard, MH, Sun, Z, Chumley, JW, Galkina, EV (2008) CD40 ligand promotes Mac-1 expression, leukocyte recruitment, and neointima formation after vascular injury. Am J Pathol 172: pp. 1141-1152
    159. Song, Z, Jin, R, Yu, S, Nanda, A, Granger, DN, Li, G (2012) Crucial role of CD40 signaling in vascular wall cells in neointimal formation and vascular remodeling after vascular interventions. Arterioscler Thromb Vasc Biol 32: pp. 50-64
    160. Urbich, C, Dernbach, E, Aicher, A, Zeiher, AM, Dimmeler, S (2002) CD40 ligand inhibits endothelial cell migration by increasing production of endothelial reactive oxygen species. Circulation 106: pp. 981-986
    161. Hristov, M, Gumbel, D, Lutgens, E, Zernecke, A, Weber, C (2010) Soluble CD40 ligand impairs the function of peripheral blood angiogenic outgrowth cells and increases neointimal formation after arterial injury. Circulation 121: pp. 315-324
    162. Bou Khzam, L, Boulahya, R, Abou-Saleh, H, Hachem, A, Zaid, Y, Merhi, Y (2013) Soluble CD40 ligand stimulates the pro-angiogenic function of peripheral blood angiogenic outgrowth cells via increased release of matrix metalloproteinase-9. PLoS One 8: pp. e84289
    163. Peguet-Navarro, J, Dalbiez-Gauthier, C, Moulon, C, Berthier, O, Reano, A, Gaucherand, M (1997) CD40 ligation of human keratinocytes inhibits their proliferation and induces their differentiation. J Immunol 158: pp. 144-152
    164. Lopez-Granados, E, Temmerman, ST, Wu, L, Reynolds, JC, Follmann, D, Liu, S (2007) Osteopenia in X-linked hyper-IgM syndrome reveals a regulatory role for CD40 ligand in osteoclastogenesis. Proc Natl Acad Sci U S A 104: pp. 5056-5061
    165. Li, Y, Toraldo, G, Li, A, Yang, X, Zhang, H, Qian, W (2007) B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 109: pp. 3839-3848
    166. Ahuja, SS, Zhao, S, Bellido, T, Plotkin, LI, Jimenez, F, Bonewald, LF (2003) CD40 ligand blocks apoptosis induced by tumor necrosis factor alpha, glucocorticoids, and etoposide in osteoblasts and the osteocyte-like cell line murine long bone osteocyte-Y4. Endocrinology 144: pp. 1761-1769
    167. Bozza, FA, Shah, AM, Weyrich, AS, Zimmerman, GA (2009) Amicus or adversary: platelets in lung biology, acute injury, and inflammation. Am J Respir Cell Mol Biol 40: pp. 123-134
    168. Hu, H, Batteux, F, Chereau, C, Kavian, N, Marut, W, Gobeaux, C (2011) Clopidogrel protects from cell apoptosis and oxidative damage in a mouse model of renal ischaemia-reperfusion injury. J Pathol 225: pp. 265-275
    169. Dixon, JT, Gozal, E, Roberts, AM (2012) Platelet-mediated vascular dysfunction during acute lung injury. Arch Physiol Biochem 118: pp. 72-82
    170. Ishikawa, M, Vowinkel, T, Stokes, KY, Arumugam, TV, Yilmaz, G, Nanda, A (2005) CD40/CD40 ligand signaling in mouse cerebral microvasculature after focal ischemia/reperfusion. Circulation 111: pp. 1690-1696
    171. Ke, B, Shen, XD, Gao, F, Tsuchihashi, S, Farmer, DG, Briscoe, D (2005) The CD154-CD40 T-cell co-stimulation pathway in liver ischemia and reperfusion inflammatory responses. Transplantation 79: pp. 1078-1083
    172. Lapchak, PH, Ioannou, A, Kannan, L, Rani, P, Dalle Lucca, JJ, Tsokos, GC (2012) Platelet-associated CD40/CD154 mediates remote tissue damage after mesenteric ischemia/reperfusion injury. PLoS One 7: pp. e32260
    173. Weyrich, AS, Zimmerman, GA (2004) Platelets: signaling cells in the immune continuum. Trends Immunol 25: pp. 489-495
    174. Fitzgerald, JR, Foster, TJ, Cox, D (2006) The interaction of bacterial pathogens with platelets. Nat Rev Microbiol 4: pp. 445-457
    175. Flaujac, C, Boukour, S, Cramer-Borde, E (2010) Platelets and viruses: an ambivalent relationship. Cell Mol Life Sci 67: pp. 545-556
    176. Speth, C, Loffler, J, Krappmann, S, Lass-Florl, C, Rambach, G (2013) Platelets as immune cells in infectious diseases. Future Microbiol 8: pp. 1431-1451
    177. Herter, JM, Rossaint, J, Zarbock, A (2014) Platelets in inflammation and immunity. J Thromb Haemost 12: pp. 1764-1775
    178. Yeaman, MR (2014) Platelets: at the nexus of antimicrobial defence. Nat Rev Microbiol 12: pp. 426-437
    179. Klinger, MH, Jelkmann, W (2002) Role of blood platelets in infection and inflammation. J Interferon Cytokine Res 22: pp. 913-922
    180. Shiraki, R, Inoue, N, Kawasaki, S, Takei, A, Kadotani, M, Ohnishi, Y (2004) Expression of Toll-like receptors on human platelets. Thromb Res 113: pp. 379-385
    181. Cognasse, F, Hamzeh-Cognasse, H, Lafarge, S, Delezay, O, Pozzetto, B, McNicol, A (2008) Toll-like receptor 4 ligand can differentially modulate the release of cytokines by human platelets. Br J Haematol 141: pp. 84-91
    182. Semple, JW, Freedman, J (2010) Platelets and innate immunity. Cell Mol Life Sci 67: pp. 499-511
    183. Vieira-de-Abreu, A, Campbell, RA, Weyrich, AS, Zimmerman, GA (2012) Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum. Semin Immunopathol 34: pp. 5-30
    184. Jenne, CN, Urrutia, R, Kubes, P (2013) Platelets: bridging hemostasis, inflammation, and immunity. Int J Lab Hematol 35: pp. 254-261
    185. Diacovo, TG, Puri, KD, Warnock, RA, Springer, TA, Andrian, UH (1996) Platelet-mediated lymphocyte delivery to high endothelial venules. Science 273: pp. 252-255
    186. Diacovo, TG, Catalina, MD, Siegelman, MH, Andrian, UH (1998) Circulating activated platelets reconstitute lymphocyte homing and immunity in L-selectin-deficient mice. J Exp Med 187: pp. 197-204
    187. Elzey, BD, Sprague, DL, Ratliff, TL (2005) The emerging role of platelets in adaptive immunity. Cell Immunol 238: pp. 1-9
    188. Li, N (2008) Platelet-lymphocyte cross-talk. J Leukoc Biol 83: pp. 1069-1078
    189. McNicol, A, Israels, SJ (2008) Beyond hemostasis: the role of platelets in inflammation, malignancy and infection. Cardiovasc Hematol Disord Drug Targets 8: pp. 99-117
    190. Smyth, SS, McEver, RP, Weyrich, AS, Morrell, CN, Hoffman, MR, Arepally, GM (2009) Platelet functions beyond hemostasis. J Thromb Haemost 7: pp. 1759-1766
    191. Sowa, JM, Crist, SA, Ratliff, TL, Elzey, BD (2009) Platelet influence on T- and B-cell responses. Arch Immunol Ther Exp (Warsz) 57: pp. 235-241
    192. Qu, Z, Chaikof, EL (2010) Interface between hemostasis and adaptive immunity. Curr Opin Immunol 22: pp. 634-642
    193. Li, C, Li, J, Li, Y, Lang, S, Yougbare, I, Zhu, G (2012) Crosstalk between Platelets and the Immune System: Old Systems with New Discoveries. Adv Hematol 2012: pp. 384685
    194. Garraud, O, Hamzeh-Cognasse, H, Pozzetto, B, Cavaillon, JM, Cognasse, F (2013) Bench-to-bedside review: Platelets and active immune functions - new clues for immunopathology?. Crit Care 17: pp. 236
    195. Chapman, LM, Aggrey, AA, Field, DJ, Srivastava, K, Ture, S, Yui, K (2012) Platelets present antigen in the context of MHC class I. J Immunol 189: pp. 916-923
    196. Kao, KJ, Cook, DJ, Scornik, JC (1986) Quantitative analysis of platelet surface HLA by W6/32 anti-HLA monoclonal antibody. Blood 68: pp. 627-632
    197. Yukawa, M, Sakon, M, Kambayashi, J, Shiba, E, Kawasaki, T, Ariyoshi, H (1991) Proteasome and its novel endogeneous activator in human platelets. Biochem Biophys Res Commun 178: pp. 256-262
    198. Gupta, N, Li, W, Willard, B, Silverstein, RL, McIntyre, TM (2014) Proteasome proteolysis supports stimulated platelet function and thrombosis. Arterioscler Thromb Vasc Biol 34: pp. 160-168
    199. Zufferey, A, Schvartz, D, Nolli, S, Reny, JL, Sanchez, JC, Fontana, P (2014) Characterization of the platelet granule proteome: Evidence of the presence of MHC1 in alpha-granules. J Proteomics 101: pp. 130-140
    200. Jin, R, Yu, S, Song, Z, Zhu, X, Wang, C, Yan, J (2013) Soluble CD40 ligand stimulates CD40-dependent activation of the beta2 integrin Mac-1 and protein kinase C zeda (PKCzeta) in neutrophils: implications for neutrophil-platelet interactions and neutrophil oxidative burst. PLoS One 8: pp. e64631
    201. Suttles, J, Stout, RD (2009) Macrophage CD40 signaling: a pivotal regulator of disease protection and pathogenesis. Semin Immunol 21: pp. 257-264
    202. Hassan, GS, Mourad, W (2011) An unexpected role for MHC class II. Nat Immunol 12: pp. 375-376
    203. Jain, S, Chodisetti, SB, Agrewala, JN (2011) CD40 signaling synergizes with TLR-2 in the BCR independent activation of resting B cells. PLoS One 6: pp. e20651
    204. Liu, X, Zhan, Z, Li, D, Xu, L, Ma, F, Zhang, P (2011) Intracellular MHC class II molecules promote TLR-triggered innate immune responses by maintaining activation of the kinase Btk. Nat Immunol 12: pp. 416-424
    205. Hundelshausen, P, Weber, C (2007) Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res 100: pp. 27-40
    206. Elzey, BD, Tian, J, Jensen, RJ, Swanson, AK, Lees, JR, Lentz, SR (2003) Platelet-mediated modulation of adaptive immunity. A communication link between innate and adaptive immune compartments. Immunity 19: pp. 9-19
    207. Kaneider, NC, Kaser, A, Tilg, H, Ricevuti, G, Wiedermann, CJ (2003) CD40 ligand-dependent maturation of human monocyte-derived dendritic cells by activated platelets. Int J Immunopathol Pharmacol 16: pp. 225-231
    208. Czapiga, M, Kirk, AD, Lekstrom-Himes, J (2004) Platelets deliver costimulatory signals to antigen-presenting cells: a potential bridge between injury and immune activation. Exp Hematol 32: pp. 135-139
    209. Martinson, J, Bae, J, Klingemann, HG, Tam, Y (2004) Activated platelets rapidly up-regulate CD40L expression and can effectively mature and activate autologous ex vivo differentiated DC. Cytotherapy 6: pp. 487-497
    210. Elzey, BD, Grant, JF, Sinn, HW, Nieswandt, B, Waldschmidt, TJ, Ratliff, TL (2005) Cooperation between platelet-derived CD154 and CD4+ T cells for enhanced germinal center formation. J Leukoc Biol 78: pp. 80-84
    211. Solpov, A, Shenkman, B, Vitkovsky, Y, Brill, G, Koltakov, A, Farzam, N (2006) Platelets enhance CD4+ lymphocyte adhesion to extracellular matrix under flow conditions: role of platelet aggregation, integrins, and non-integrin receptors. Thromb Haemost 95: pp. 815-821
    212. Xu, H, Zhang, X, Mannon, RB, Kirk, AD (2006) Platelet-derived or soluble CD154 induces vascularized allograft rejection independent of cell-bound CD154. J Clin Invest 116: pp. 769-774
    213. Cognasse, F, Hamzeh-Cognasse, H, Lafarge, S, Chavarin, P, Cogne, M, Richard, Y (2007) Human platelets can activate peripheral blood B cells and increase production of immunoglobulins. Exp Hematol 35: pp. 1376-1387
    214. Iannacone, M, Sitia, G, Isogawa, M, Whitmire, JK, Marchese, P, Chisari, FV (2008) Platelets prevent IFN-alpha/beta-induced lethal hemorrhage promoting CTL-dependent clearance of lymphocytic choriomeningitis virus. Proc Natl Acad Sci U S A 105: pp. 629-634
    215. Elzey, BD, Schmidt, NW, Crist, SA, Kresowik, TP, Harty, JT, Nieswandt, B (2008) Platelet-derived CD154 enables T-cell priming and protection against Listeria monocytogenes challenge. Blood 111: pp. 3684-3691
    216. Nomura, S, Fujita, S, Nakanishi, T, Yokoi, T, Shimamoto, K, Miyamoto, R (2012) Platelet-derived microparticles cause CD154-dependent activation of dendritic cells. Platelets 23: pp. 81-82
    217. Elzey, BD, Ratliff, TL, Sowa, JM, Crist, SA (2011) Platelet CD40L at the interface of adaptive immunity. Thromb Res 127: pp. 180-183
    218. Duffau, P, Seneschal, J, Nicco, C, Richez, C, Lazaro, E, Douchet, I (2010) Platelet CD154 potentiates interferon-alpha secretion by plasmacytoid dendritic cells in systemic lupus erythematosus. Sci Transl Med 2: pp. 47ra63
    219. Metcalf, D (2008) Hematopoietic cytokines. Blood 111: pp. 485-491
    220. Baldridge, MT, King, KY, Goodell, MA (2011) Inflammatory signals regulate hematopoietic stem cells. Trends Immunol 32: pp. 57-65
    221. Takizawa, H, Boettcher, S, Manz, MG (2012) Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood 119: pp. 2991-3002
    222. Schuettpelz, LG, Link, DC (2013) Regulation of hematopoietic stem cell activity by inflammation. Front Immunol 4: pp. 204
    223. Libregts, SF, Nolte, MA (2014) Parallels between immune driven-hematopoiesis and T cell activation: 3 signals that relay inflammatory stress to the bone marrow. Exp Cell Res 329: pp. 239-247
    224. Manz, MG, Boettcher, S (2014) Emergency granulopoiesis. Nat Rev Immunol 14: pp. 302-314
    225. Foss, B, Bruserud, O, Hervig, T (2008) Platelet-released supernatants enhance hematopoietic stem cell proliferation in vitro. Platelets 19: pp. 155-159
    226. Boer, HC, Oeveren-Rietdijk, AM, Rotmans, JI, Dekkers, OM, Rabelink, TJ, Zonneveld, AJ (2013) Activated platelets correlate with mobilization of naive CD34(+) cells and generation of CD34(+) /KDR(+) cells in the circulation. A meta-regression analysis. J Thromb Haemost 11: pp. 1583-1592
    227. Funakoshi, S, Taub, DD, Anver, MR, Raziuddin, A, Asai, O, Reddy, V (1997) Immunologic and hematopoietic effects of CD40 stimulation after syngeneic bone marrow transplantation in mice. J Clin Invest 99: pp. 484-491
    228. Larson, AW, LeBien, TW (1994) Cross-linking CD40 on human B cell precursors inhibits or enhances growth depending on the stage of development and the IL costimulus. J Immunol 153: pp. 584-594
    229. Carlring, J, Altaher, HM, Clark, S, Chen, X, Latimer, SL, Jenner, T (2011) CD154-CD40 interactions in the control of murine B cell hematopoiesis. J Leukoc Biol 89: pp. 697-706
    230. Seijkens, T, Engel, D, Tjwa, M, Lutgens, E (2010) The role of CD154 in haematopoietic development. Thromb Haemost 104: pp. 693-701
    231. Solanilla, A, Dechanet, J, Andaloussi, A, Dupouy, M, Godard, F, Chabrol, J (2000) CD40-ligand stimulates myelopoiesis by regulating flt3-ligand and thrombopoietin production in bone marrow stromal cells. Blood 95: pp. 3758-3764
    232. Mavroudi, I, Papadaki, V, Pyrovolaki, K, Katonis, P, Eliopoulos, AG, Papadaki, HA (2011) The CD40/CD40 ligand interactions exert pleiotropic effects on bone marrow granulopoiesis. J Leukoc Biol 89: pp. 771-783
    233. Honn, KV, Tang, DG, Chen, YQ (1992) Platelets and cancer metastasis: more than an epiphenomenon. Semin Thromb Hemost 18: pp. 392-415
    234. Honn, KV, Tang, DG, Crissman, JD (1992) Platelets and cancer metastasis: a causal relationship?. Cancer Metastasis Rev 11: pp. 325-351
    235. Nash, GF, Turner, LF, Scully, MF, Kakkar, AK (2002) Platelets and cancer. Lancet Oncol 3: pp. 425-430
    236. Nierodzik, ML, Karpatkin, S (2006) Thrombin induces tumor growth, metastasis, and angiogenesis: Evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell 10: pp. 355-362
    237. Jain, S, Harris, J, Ware, J (2010) Platelets: linking hemostasis and cancer. Arterioscler Thromb Vasc Biol 30: pp. 2362-2367
    238. Gay, LJ, Felding-Habermann, B (2011) Contribution of platelets to tumour metastasis. Nat Rev Cancer 11: pp. 123-134
    239. Goubran, HA, Burnouf, T, Radosevic, M, El-Ekiaby, M (2013) The platelet-cancer loop. Eur J Intern Med 24: pp. 393-400
    240. Menter, DG, Tucker, SC, Kopetz, S, Sood, AK, Crissman, JD, Honn, KV (2014) Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastasis Rev 33: pp. 231-269
    241. Pinedo, HM, Verheul, HM, D鈥橝mato, RJ, Folkman, J (1998) Involvement of platelets in tumour angiogenesis?. Lancet 352: pp. 1775-1777
    242. Sabrkhany, S, Griffioen, AW, Oude Egbrink, MG (2011) The role of blood platelets in tumor angiogenesis. Biochim Biophys Acta 1815: pp. 189-196
    243. Lin, WW, Karin, M (2007) A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 117: pp. 1175-1183
    244. Mantovani, A, Allavena, P, Sica, A, Balkwill, F (2008) Cancer-related inflammation. Nature 454: pp. 436-444
    245. Gasic, GJ, Gasic, TB, Stewart, CC (1968) Antimetastatic effects associated with platelet reduction. Proc Natl Acad Sci U S A 61: pp. 46-52
    246. Karpatkin, S, Pearlstein, E, Ambrogio, C, Coller, BS (1988) Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Invest 81: pp. 1012-1019
    247. Borsig, L, Wong, R, Feramisco, J, Nadeau, DR, Varki, NM, Varki, A (2001) Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci U S A 98: pp. 3352-3357
    248. Erpenbeck, L, Schon, MP (2010) Deadly allies: the fatal interplay between platelets and metastasizing cancer cells. Blood 115: pp. 3427-3436
    249. Labelle, M, Begum, S, Hynes, RO (2011) Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 20: pp. 576-590
    250. Coupland, LA, Chong, BH, Parish, CR (2012) Platelets and P-selectin control tumor cell metastasis in an organ-specific manner and independently of NK cells. Cancer Res 72: pp. 4662-4671
    251. Schumacher, D, Strilic, B, Sivaraj, KK, Wettschureck, N, Offermanns, S (2013) Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell 24: pp. 130-137
    252. Janowska-Wieczorek, A, Wysoczynski, M, Kijowski, J, Marquez-Curtis, L, Machalinski, B, Ratajczak, J (2005) Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 113: pp. 752-760
    253. Varon, D, Hayon, Y, Dashevsky, O, Shai, E (2012) Involvement of platelet derived microparticles in tumor metastasis and tissue regeneration. Thromb Res 130: pp. S98-S99
    254. Tong, AW, Stone, MJ (2003) Prospects for CD40-directed experimental therapy of human cancer. Cancer Gene Ther 10: pp. 1-13
    255. Vonderheide, RH (2007) Prospect of targeting the CD40 pathway for cancer therapy. Clin Cancer Res 13: pp. 1083-1088
    256. Loskog, AS, Eliopoulos, AG (2009) The Janus faces of CD40 in cancer. Semin Immunol 21: pp. 301-307
    257. Beatty, GL, Chiorean, EG, Fishman, MP, Saboury, B, Teitelbaum, UR, Sun, W (2011) CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331: pp. 1612-1616
    258. Korniluk, A, Kemona, H, Dymicka-Piekarska, V (2014) Multifunctional CD40L: pro- and anti-neoplastic activity. Tumour Biol 35: pp. 9447-9457
    259. Villeneuve, J, Lepreux, S, Mulot, A, Berard, AM, Higa-Nishiyama, A, Costet, P (2010) A protective role for CD154 in hepatic steatosis in mice. Hepatology 52: pp. 1968-79
    260. Poggi, M, Engel, D, Christ, A, Beckers, L, Wijnands, E, Boon, L (2011) CD40L deficiency ameliorates adipose tissue inflammation and metabolic manifestations of obesity in mice. Arterioscler Thromb Vasc Biol 31: pp. 2251-60
    261. Wolf, D, Jehle, F, Ortiz Rodriguez, A, Dufner, B, Hoppe, N, Colberg, C (2012) CD40L deficiency attenuates diet-induced adipose tissue inflammation by impairing immune cell accumulation and production of pathogenic IgG-antibodies. PLoS One 7: pp. e33026
    262. Guo, CA, Kogan, S, Amano, SU, Wang, M, Dagdeviren, S, Friedline, RH (2013) CD40 deficiency in mice exacerbates obesity-induced adipose tissue inflammation, hepatic steatosis, and insulin resistance. Am J Physiol Endocrinol Metab 304: pp. E951-63
    263. Wolf, D, Jehle, F, Michel, NA, Bukosza, EN, Rivera, J, Chen, YC (2014) Coinhibitory suppression of T cell activation by CD40 protects against obesity and adipose tissue inflammation in mice. Circulation 129: pp. 2414-25
    264. Franchini, M, Mannucci, PM (2011) Thrombogenicity and cardiovascular effects of ambient air pollution. Blood 118: pp. 2405-2412
  • 刊物主题:Hematology; Oncology;
  • 出版者:BioMed Central
  • ISSN:2162-3619
文摘
The role of platelets extends beyond hemostasis. The pivotal role of platelets in inflammation has shed new light on the natural history of conditions associated with acute or chronic inflammation. Beyond the preservation of vascular integrity, platelets are essential to tissue homeostasis and platelet-derived products are already used in the clinics. Unanticipated was the role of platelets in the adaptative immune response, allowing a renewed conceptual approach of auto-immune diseases. Platelets are also important players in cancer growth and dissemination. Platelets fulfill most of their functions through the expression of still incompletely characterized membrane-bound or soluble mediators. Among them, CD154 holds a peculiar position, as platelets represent a major source of CD154 and as CD154 contributes to most of these new platelet attributes. Here, we provide an overview of some of the new frontiers that the study of platelet CD154 is opening, in inflammation, tissue homeostasis, immune response, hematopoiesis and cancer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700