A mixed formulation for the direct approximation of L 2-weighted controls for the linear heat equation
详细信息    查看全文
  • 作者:Arnaud Münch ; Diego A. Souza
  • 关键词:Linear heat equation ; Null controllability ; Finite element methods ; Mixed formulation ; 35K35 ; 65M12 ; 93B40 ; 65K10
  • 刊名:Advances in Computational Mathematics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:42
  • 期:1
  • 页码:85-125
  • 全文大小:3,389 KB
  • 参考文献:1.Ben Belgacem, F., Kaber, S. M.: On the Dirichlet boundary controllability of the one-dimensional heat equation: semi-analytical calculations and ill-posedness degree. Inverse Problems 27(19), 055012 (2011)CrossRef MathSciNet
    2.Boyer, F.: On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems. In: CANUM, 2012, Super-Besse, ESAIM Proc., EDP Sci., Les Ulis (2013)
    3.Boyer, F., Hubert, F., Le Rousseau, J.: Uniform controllability properties for space/time-discretized parabolic equations. Numer Math. 118, 601–661 (2011)CrossRef MathSciNet MATH
    4.Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods, vol. 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York (1991)CrossRef
    5.Carthel, C., Glowinski, R., Lions, J.-L.: On exact and approximate boundary controllabilities for the heat equation: a numerical approach. J. Optim. Theory Appl. 82, 429–484 (1994)CrossRef MathSciNet MATH
    6.Castro, C., Cîndea, N., A. Münch: Controllability of the linear wave equation with moving inner actions. SIAM J. Control Optim. 52, 4027–4056 (2014)CrossRef MathSciNet
    7.Cazenave, T., Haraux, A.: An introduction to semilinear evolution equations, vol. 13 of Oxford Lecture Series in Mathematics and its Applications, The Clarendon Press Oxford University Press, New York, 1998. In: Translated from the French original by Yvan Martel and revised by the authors (1990)
    8.Chapelle, D., Bathe, K.-J.: The inf-sup test. Comput. & Structures 47, 537–545 (1993)CrossRef MathSciNet MATH
    9.Ciarlet, P. G.: The finite element method for elliptic problems. In: Vol. 40 of Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)]. (2002)
    10.Cîndea, N., Fernández-Cara, E., Münch, A.: Numerical controllability of the wave equation through primal methods and carleman estimates, ESAIM Control Optim. Calc. Var. 19, 1076–1108 (2013)MATH
    11.Cîndea, N., Münch, A.: A mixed formulation for the direct approximation of the control of minimal L 2-norm for linear type wave equations. In: To appear in Calcolo (Springer), http://​hal.​archives-ouvertes.​fr/​hal-00853767 . vol. 52, issue 2 (2015)
    12.Coron, J.-M.: Control and nonlinearity, vol. 136 of Mathematical Surveys and Monographs, American Mathematical Society. In: Providence RI (2007)
    13.Daniel, J. W.: The approximate minimization of functionals. Prentice-Hall Inc., Englewood Cliffs N.J. (1971)MATH
    14.Dunavant, D. A.: High degree efficient symmetrical Gaussian quadrature rules for the triangle, Internat. J. Numer. Methods Engrg. 21, 1129–1148 (1985)CrossRef MathSciNet MATH
    15.Engl, H. W., Hanke, M., Neubauer, A.: Regularization of inverse problems, vol. 375 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht (1996)CrossRef
    16.Ervedoza, S., Valein, J.: On the observability of abstract time-discrete linear parabolic equations. Rev. Mat. Complut. 23, 163–190 (2010)CrossRef MathSciNet MATH
    17.Fernández-Cara, E., Münch, A.: Numerical null controllability of semi-linear 1-D heat equations: fixed point, least squares and Newton methods. Math. Control Relat. Fields 2, 217–246 (2012)CrossRef MathSciNet MATH
    18.Fernández-Cara, E., Münch, A.: Strong convergent approximations of null controls for the 1D heat equation. SeMA J. 61, 49–78 (2013)
    19.Fernández-Cara, E., Münch, A.: Numerical exact controllability of the 1D heat equation: duality and Carleman weights. J. Optim. Theory Appl. 163, 253–285 (2014)
    20.Fortin, M., Glowinski, R.: Augmented Lagrangian methods, vol. 15 of Studies in Mathematics and its Applications, North-Holland Publishing Co. In: Amsterdam, Applications to the numerical solution of boundary value problems, Translated from the French by B. Hunt and D. C. Spicer (1983)
    21.Fursikov, A.V., Imanuvilov, O.Y.: Controllability of evolution equations, vol. 34 of Lecture Notes Series. In: Seoul National University Research Institute of Mathematics Global Analysis Research Center Seoul (1996)
    22.Glowinski, R.: Handbook of numerical analysis. Vol. IX. In: Handbook of Numerical Analysis, IX, North-Holland, Amsterdam, 2003. Numerical methods for fluids. Part 3. (2003)
    23.Glowinski, R., Lions, J.-L.: Exact and approximate controllability for distributed parameter systems, in Acta numerica, 1995, Acta Numer., Cambridge Univ. In: Press, Cambridge (1995)
    24.Glowinski, R., Lions, J.-L., He, J.: Exact and approximate controllability for distributed parameter systems, vol. 117 of Encyclopedia of Mathematics and its Applications, Cambridge University Press. In: Cambridge, A numerical approach (2008)
    25.Kindermann, S.: Convergence rates of the Hilbert uniqueness method via Tikhonov regularization. J. Optim. Theory Appl. 103, 657–673 (1999)CrossRef MathSciNet MATH
    26.Labbé, S., Trélat, E.: Uniform controllability of semidiscrete approximations of parabolic control systems. Systems Control Lett. 55, 597–609 (2006)CrossRef MathSciNet MATH
    27.Lasiecka, I., Triggiani, R.: Control theory for partial differential equations: continuous and approximation theories. I, vol. 74 of Encyclopedia of Mathematics and its Applications, Cambridge University Press. In: Cambridge Abstract parabolic systems (2000)
    28.Lebeau, G., Robbiano, L.: Contrôle exact de l’équation de la chaleur. Comm. Partial Differential Equations 20, 335–356 (1995)CrossRef MathSciNet MATH
    29.Lions, J.-L.: Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1, vol. 8 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics], Masson, Paris. In: Contrôlabilité exacte. [Exact controllability], With appendices by E. Zuazua, C. Bardos, G. Lebeau and J. Rauch (1988)
    30.Lions, J.-L., Magenes, E.: Non-homogeneous boundary value problems and applications. Vol. III. In: Springer-Verlag, New York-Heidelberg, 1973. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 183. (1973)
    31.Micu, S., Zuazua, E.: On the regularity of null-controls of the linear 1-d heat equation. C. R. Math. Acad. Sci. Paris 349, 673–677 (2011)CrossRef MathSciNet MATH
    32.Münch, A.: A least-squares formulation for the approximation of controls for the Stokes system. Math. Control Signals Systems 27, 1–27 (2015)CrossRef MathSciNet
    33.Münch, A., Pedregal, P.: Numerical null controllability of the heat equation through a least-squares and variational approach, European. J. Appl. Math. 25, 277–306 (2014)MATH
    34.Münch, A., Zuazua, E.: Numerical approximation of null controls for the heat equation: ill-posedness and remedies. Inverse Problems 26(39), 085018 (2010)CrossRef MathSciNet
    35.Russell, D. L.: Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20, 639–739 (1978)CrossRef MathSciNet MATH
    36.Zuazua, E.: Control and numerical approximation of the wave and heat equations, in International Congress of Mathematicians. Vol. III. Eur. Math. Soc., Zürich, 1389–1417 (2006)
  • 作者单位:Arnaud Münch (1)
    Diego A. Souza (2) (3)

    1. Laboratoire de Mathématiques, Université Blaise Pascal (Clermont-Ferrand 2), UMR CNRS 6620, Campus de Cézeaux, 63177, Aubière, France
    2. Departamento EDAN, University of Sevilla, 41080, Sevilla, Spain
    3. Departamento de Matemática, Universidade Federal da Paraíba, 58051-900, João Pessoa–PB, Brazil
  • 刊物类别:Computer Science
  • 刊物主题:Numeric Computing
    Calculus of Variations and Optimal Control
    Mathematics
    Algebra
    Theory of Computation
  • 出版者:Springer U.S.
  • ISSN:1572-9044
文摘
This paper deals with the numerical computation of null controls for the linear heat equation. The goal is to compute approximations of controls that drive the solution from a prescribed initial state to zero at a given positive time. In [Fernandez-Cara & Münch, Strong convergence approximations of null controls for the 1D heat equation, 2013], a so-called primal method is described leading to a strongly convergent approximation of distributed control: the controls minimize quadratic weighted functionals involving both the control and the state and are obtained by solving the corresponding optimality conditions. In this work, we adapt the method to approximate the control of minimal square integrable-weighted norm. The optimality conditions of the problem are reformulated as a mixed formulation involving both the state and its adjoint. We prove the well-posedeness of the mixed formulation (in particular the inf-sup condition) then discuss several numerical experiments. The approach covers both the boundary and the inner situation and is valid in any dimension. Keywords Linear heat equation Null controllability Finite element methods Mixed formulation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700