Bifurcation analysis of a self-organizing signaling system for eukaryotic chemotaxis
详细信息    查看全文
  • 作者:Naotoshi Nakamura ; Tatsuo Shibata
  • 关键词:Chemotaxis ; Inositol lipids ; Self ; organization ; Reaction–diffusion equations ; Excitable systems ; Bifurcation analysis ; 35K61 ; 35K57 ; 65M22
  • 刊名:Japan Journal of Industrial and Applied Mathematics
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:32
  • 期:3
  • 页码:807-828
  • 全文大小:1,293 KB
  • 参考文献:1.Arai, Y., Shibata, T., Matsuoka, S., Sato, M.J., Yanagida, T., Ueda, M.: Self-organization of the phosphatidylinositol lipids signaling system for random cell migration. Proc. Natl. Acad. Sci. 107, 12399-2404 (2010)CrossRef
    2.Dahlem, M.A., Isele, T.M.: Transient localized wave patterns and their application to migraine. J. Math. Neurosci. 3, 7 (2013)MathSciNet CrossRef
    3.Hecht, I., Kessler, D.A., Levine, H.: Transient localized patterns in noise-driven reaction–diffusion systems. Phys. Rev. Lett. 104, 158301 (2010)CrossRef
    4.Hecht, I., Skoge, M.L., Charest, P.G., Ben-Jacob, E., Firtel, R.A., Loomis, W.F., Levine, H., Rappel, W.J.: Activated membrane patches guide chemotactic cell motility. PLoS Comput. Biol. 7, e1002044 (2011)MathSciNet CrossRef
    5.Holmes, W.R., Edelstein-Keshet, L.: A comparison of computational models for eukaryotic cell shape and motility. PLoS Comput. Biol. 8, e1002793 (2012)MathSciNet CrossRef
    6.Holmes, W.R.: An efficient, non-linear stability analysis for detecting pattern formation in reaction diffusion systems. Bull. Math. Biol. 76, 157-83 (2014)MATH MathSciNet CrossRef
    7.Holmes, W.R., Mata, M.A., Edelstein-Keshet, L.: Local perturbation analysis: a computational tool for biophysical reaction–diffusion models. Biophys. J. 108, 230-36 (2015)CrossRef
    8.Huang, C.H., Tang, M., Shi, C., Iglesias, P.A., Devreotes, P.N.: An excitable signal integrator couples to an idling cytoskeletal oscillator to drive cell migration. Nat. Cell. Biol. 15, 1307-316 (2013)CrossRef
    9.Jimbo, S., Morita, Y.: Lyapunov function and spectrum comparison for a reaction–diffusion system with mass conservation. J. Differ. Equ. 255, 1657-683 (2013)MATH MathSciNet CrossRef
    10.Marée, A.F.M.: How cells integrate complex stimuli: the effect of feedback from phosphoinositides and cell shape on cell polarization and motility. PLoS Comput. Biol. 8, e1002402 (2012)CrossRef
    11.Mata, M.A., Dutot, M., Edelstein-Keshet, L., Holmes, W.R.: A model for intracellular actin waves explored by nonlinear local perturbation analysis. J. Theor. Biol. 334, 149-61 (2013)MathSciNet CrossRef
    12.Meinhardt, H.: Orientation of chemotactic cells and growth cones: models and mechanisms. J. Cell Sci. 112, 2867-874 (1999)
    13.Nishikawa, M., H?rning, M., Ueda, M., Shibata, T.: Excitable signal transduction induces both spontaneous and directional cell asymmetries in the phosphatidylinositol lipid signaling system for eukaryotic chemotaxis. Biophys. J. 106, 723-34 (2014)CrossRef
    14.Otsuji, M., Ishihara, S., Co, C., Kaibuchi, K., Mochizuki, A., Kuroda, S.: A mass conserved reaction–diffusion system captures properties of cell polarity. PLoS Comput. Biol. 3, e108 (2007)MathSciNet CrossRef
    15.Planchon, T.A., Gao, L., Milkie, D.E., Davidson, M.W., Galbraith, J.A., Galbraith, C.G., Betzig, E.: Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods 8, 417-23 (2011)CrossRef
    16.Sardanyés, J., Solé, R.V.: Ghosts in the origins of life? Int. J. Bifurc. Chaos 16, 2761-765 (2006)MATH CrossRef
    17.Shi, C., Iglesias, P.A.: Excitable behaviors in amoeboid chemotaxis. Wiley Interdiscip. Rev. Syst. Biol. Med. 5, 631-42 (2013)CrossRef
    18.Shibata, T., Nishikawa, M., Matsuoka, S., Ueda, M.: Modeling the self-organized phosphatidylinositol lipid signaling system in chemotactic cells using quantitative image analysis. J Cell Sci. 125, 5138-150 (2012)CrossRef
    19.Shibata, T., Nishikawa, M., Matsuoka, S., Ueda, M.: Intracellular encoding of spatiotemporal guidance cues in a self-organizing signaling system for chemotaxis in Dictyostelium cells. Biophys. J. 105, 2199-209 (2013)CrossRef
    20.Swaney, K.F., Huan, C.H., Devreotes, P.N.: Eukaryotic chemotaxis: a network of signaling pathway controls motility, directional sensing, and polarity. Annu. Rev. Biophys. 39, 265-89 (2010)CrossRef
    21.Taniguchi, D., Ishihara, S., Oonuki, T., Honda-Kitahara, M., Kaneko, K., Sawai, S.: Phase geometries of two-dimensional excitable waves govern self-organized morphodynamics of amoeboid cells. Proc. Natl. Acad. Sci. 110, 5016-021 (2013)CrossRef
    22.Trikey, S.T., Virgin, L.N.: Bottlenecking phenomenon near a saddle-node remnant in Duffing oscillator. Phys. Lett. A 248, 185-90 (1998)CrossRef
    23.Tang, M., Wang, M., Shi, C., Iglesias, P.A., Devreotes, P.N., Huang, C.H.: Evolutionarily conserved coupling of adaptive and excitable networks mediates eukaryotic chemotaxis. Nat. Commun. 5, 5175 (2014)CrossRef
    24.Xiong, Y., Huang, C.H., Iglesias, P.A., Devreotes, P.N.: Cells navigate with a local-excitation, global-inhibition-biased excitable network. Proc. Natl. Acad. Sci. 107, 17079-7086 (2010)CrossRef
  • 作者单位:Naotoshi Nakamura (1)
    Tatsuo Shibata (1)

    1. Laboratory for Physical Biology, RIKEN Quantitative Biology Center and RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Applications of Mathematics
    Computational Mathematics and Numerical Analysis
  • 出版者:Springer Japan
  • ISSN:1868-937X
文摘
Phosphatidylinositol 3,4,5-trisphosphate (\(\hbox {PIP}_3\)) is a membrane lipid that works as a directional compass in migrating cells. Remarkably, \(\hbox {PIP}_3\) shows both transient patterns and oscillatory patterns on the membrane, depending on experimental conditions (Arai et al. in Proc Natl Acad Sci 107:12399-2404, 2010). Here, we analyzed a reaction–diffusion model of the phosphatidylinositol signaling system that gives rise to transient pattern formation. Numerical bifurcation analysis showed that equilibrium solutions can be classified into uniform, unimodal and bimodal ones, among which the first and the second are stable for some parameter regions. We found that transient patterns of \(\hbox {PIP}_3\) can be explained by the “ghost-after unimodal solutions disappear at a fold bifurcation. We further reduced the original PDEs to five-variable ODEs, considering only local and global concentrations. The bifurcation analysis of the reduced ODEs supports the above observation. Finally, we propose that trajectories of such transient patterns are determined by the phase space structure of the dynamical system. Keywords Chemotaxis Inositol lipids Self-organization Reaction–diffusion equations Excitable systems Bifurcation analysis

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700