Modeling larval malaria vector habitat locations using landscape features and cumulative precipitation measures
详细信息    查看全文
  • 作者:Robert S McCann (1) (7)
    Joseph P Messina (2)
    David W MacFarlane (3)
    M Nabie Bayoh (4)
    John M Vulule (4)
    John E Gimnig (5)
    Edward D Walker (6)

    1. Department of Entomology
    ; Michigan State University ; East Lansing ; MI ; USA
    7. Laboratory of Entomology
    ; Wageningen University and Research Centre ; PO Box 8031 ; Wageningen ; 6700 EH ; Netherlands
    2. Department of Geography
    ; Michigan State University ; East Lansing ; MI ; USA
    3. Department of Forestry
    ; Michigan State University ; East Lansing ; MI ; USA
    4. Centre for Global Health Research
    ; Kenya Medical Research Institute/Centers for Disease Control and Prevention ; Kisumu ; Kenya
    5. Division of Parasitic Diseases and Malaria
    ; Centers for Disease Control and Prevention ; Atlanta ; GA ; USA
    6. Department of Microbiology and Molecular Genetics
    ; Michigan State University ; East Lansing ; MI ; USA
  • 关键词:Random forest ; Logistic regression ; Anopheles gambiae ; Larval habitats ; Predictive models
  • 刊名:International Journal of Health Geographics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:13
  • 期:1
  • 全文大小:832 KB
  • 参考文献:World Malaria Report 2012. World Health Organization, Geneva
    1. Gething, PW, Patil, AP, Smith, DL, Guerra, CA, Elyazar, IR, Johnston, GL, Tatem, AJ, Hay, SI (2011) A new world malaria map: Plasmodium falciparum endemicity in 2010. Malar J 10: pp. 378 CrossRef
    2. Greenwood, BM (1989) The microepidemiology of malaria and its importance to malaria control. Trans R Soc Trop Med Hyg 83: pp. 25-29 CrossRef
    3. Gamage-Mendis, AC, Carter, R, Mendis, C, De Zoysa, AP, Herath, PR, Mendis, KN (1991) Clustering of malaria infections within an endemic population: risk of malaria associated with the type of housing construction. Am J Trop Med Hyg 45: pp. 77-85 CrossRef
    4. Trape, J-F, Lefebvre-Zante, E, Legros, F, Ndiaye, G, Bouganali, H, Druilhe, P, Salem, G (1992) Vector density gradients and the epidemiology of urban malaria in Dakar, Senegal. Am J Trop Med Hyg 47: pp. 181-189 CrossRef
    5. Clark, TD, Greenhouse, B, Njama Meya, D, Nzarubara, B, Maiteki Sebuguzi, C, Staedke, SG, Seto, E, Kamya, MR, Rosenthal, PJ, Dorsey, G (2008) Factors determining the heterogeneity of malaria incidence in children in Kampala, Uganda. J Infect Dis 198: pp. 393-400 CrossRef
    6. Cohen, JM, Ernst, KC, Lindblade, KA, Vulule, JM, John, CC, Wilson, ML (2010) Local topographic wetness indices predict household malaria risk better than land-use and land-cover in the western Kenya highlands. Malar J 9: pp. 328 CrossRef
    7. Zhou, G, Minakawa, N, Githeko, AK, Yan, G (2004) Spatial distribution patterns of malaria vectors and sample size determination in spatially heterogeneous environments: a case study in the West Kenyan highland. J Med Entomol 41: pp. 1001-1009 CrossRef
    8. Bogh, C, Lindsay, SW, Clarke, SE, Dean, A, Jawara, M, Pinder, M, Thomas, CJ (2007) High spatial resolution mapping of malaria transmission risk in the Gambia, west Africa, using LANDSAT TM satellite imagery. Am J Trop Med Hyg 76: pp. 875-881 CrossRef
    9. Ribeiro, JMC, Seulu, F, Abose, T, Kidane, G, Teklehaimanot, A (1996) Temporal and spatial distribution of anopheline mosquitos in an Ethiopian village: implications for malaria control strategies. Bull World Health Organ 74: pp. 299-305 CrossRef
    10. Coetzee, M, Hunt, RH, Wilkerson, RC, Torre della, A, Coulibaly, MB, Besansky, NJ (2013) Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex. Zootaxa 3619: pp. 246-274 CrossRef
    11. Gimnig, JE, Ombok, M, Kamau, L, Hawley, WA (2001) Characteristics of larval anopheline (Diptera: Culicidae) habitats in western Kenya. J Med Entomol 38: pp. 282-288 CrossRef
    12. Minakawa, N, Mutero, CM, Githure, JI, Beier, JC, Yan, G (1999) Spatial distribution and habitat characterization of anopheline mosquito larvae in western Kenya. Am J Trop Med Hyg 61: pp. 1010-1016 CrossRef
    13. Charlwood, JD, Edoh, D (1996) Polymerase chain reaction used to describe larval habitat use by Anopheles gambiae complex (Diptera: Culicidae) in the environs of Ifakara, Tanzania. J Med Entomol 33: pp. 202-204 CrossRef
    14. Mutuku, FM, Alaii, JA, Bayoh, MN, Gimnig, JE, Vulule, JM, Walker, ED, Kabiru, E, Hawley, WA (2006) Distribution, description, and local knowledge of larval habitats of Anopheles gambiae s.l. in a village in western Kenya. Am J Trop Med Hyg 74: pp. 44-53 CrossRef
    15. Mutuku, F, Bayoh, MN, Hightower, A, Vulule, JM, Gimnig, JE, Mueke, J, Amimo, F, Walker, ED (2009) A supervised land cover classification of a western Kenya lowland endemic for human malaria: associations of land cover with larval Anopheles habitats. Int J Health Geogr 8: pp. 19 CrossRef
    16. Mushinzimana, E, Munga, S, Minakawa, N, Li, L, Feng, C-C, Bian, L, Kitron, U, Schmidt, C, Beck, L, Zhou, G, Githeko, AK, Yan, G (2006) Landscape determinants and remote sensing of anopheline mosquito larval habitats in the western Kenya highlands. Malar J 5: pp. 13 CrossRef
    17. Beven, KJ, Kirkby, MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24: pp. 43-69 CrossRef
    18. Clennon, JA, Kamanga, A, Musapa, M, Shiff, C, Glass, GE (2010) Identifying malaria vector breeding habitats with remote sensing data and terrain-based landscapeindices in Zambia. Int J Health Geogr 9: pp. 58 CrossRef
    19. Li, L, Bian, L, Yakob, L, Zhou, G, Yan, G (2011) Analysing the generality of spatially predictive mosquito habitat models. Acta Trop 119: pp. 30-37 CrossRef
    20. Nmor, JC, Sunahara, T, Goto, K, Futami, K, Sonye, G, Akweywa, P, Dida, G, Minakawa, N (2013) Topographic models for predicting malaria vector breeding habitats: potential tools for vector control managers. Parasit Vectors 6: pp. 14 CrossRef
    21. Bogh, C, Clarke, SE, Jawara, M, Thomas, CJ, Lindsay, SW (2003) Localized breeding of the Anopheles gambiae complex (Diptera: Culicidae) along the River Gambia, West Africa. Bull Entomol Res 93: pp. 279-287 CrossRef
    22. Munga, S, Yakob, L, Mushinzimana, E, Zhou, G, Ouna, T, Minakawa, N, Githeko, AK, Yan, G (2009) Land use and land cover changes and spatiotemporal dynamics of anopheline larval habitats during a four-year period in a highland community of Africa. Am J Trop Med Hyg 81: pp. 1079-1084 CrossRef
    23. Phillips-Howard, PA, Nahlen, BL, Alaii, JA, ter FO, K, Gimnig, JE, Terlouw, DJ, Kachur, SP, Hightower, AW, Lal, AA, Schoute, E, Oloo, AJ, Hawley, WA (2003) The efficacy of permethrin-treated bed nets on child mortality and morbidity in western Kenya I: development of infrastructure and description of study site. Am J Trop Med Hyg 68: pp. 3-9 CrossRef
    24. Hamel, MJ, Adazu, K, Obor, D, Sewe, M, Vulule, JM, Williamson, JM, Slutsker, L, Feikin, DR, Laserson, KF (2011) A reversal in reductions of child mortality in western Kenya, 2003-2009. Am J Trop Med Hyg 85: pp. 597-605 CrossRef
    25. Hurlbert, SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54: pp. 187-211 CrossRef
    26. Taylor, KA, Koros, JK, Nduati, J, Copeland, RS, Collins, FH, Brandling-Bennett, AD (1990) Plasmodium falciparum infection rates in Anopheles gambiae, An. arabiensis, and An. funestus in western Kenya. Am J Trop Med Hyg 43: pp. 124-129 CrossRef
    27. Beier, JC, Perkins, PV, Onyango, FK, Gargan, TP, Oster, CN, Whitmire, RE, Koech, DK, Roberts, CR (1990) Characterization of malaria transmission by Anopheles (Diptera: Culicidae) in western Kenya in preparation for malaria vaccine trials. J Med Entomol 27: pp. 570-577 CrossRef
    28. Odiere, M, Bayoh, MN, Gimnig, JE, Vulule, JM, Irungu, L, Walker, ED (2007) Sampling outdoor, resting Anopheles gambiae and other mosquitoes (Diptera: Culicidae) in western Kenya with clay pots. J Med Entomol 44: pp. 14-22 CrossRef
    29. Gillies, MT, Coetzee, M (1987) A Supplement to the Anophelinae of Africa South of the Sahara (Afrotropical Region). South African Institute for Medical Research, Johannesburg, South Africa
    30. Sombroek, WG, Braun, HMH, van der Pouw, BJA (1982) Exploratory Soil Map and Agro-Climatic Zone Map of Kenya, 1980. Scale 1: 1,000,000. Kenya Soil Survey, Nairobi, Kenya
    31. MacQueen, J (1967) Some methods for classification and analysis of multivariate observations. Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Volume 1. pp. 281-297
    32. Hightower, AW, Ombok, M, Otieno, R, Odhiambo, R, Oloo, AJ, Lal, AA, Nahlen, BL, Hawley, WA (1998) A geographic information system applied to a malaria field study in western Kenya. Am J Trop Med Hyg 58: pp. 266-272 CrossRef
    33. Ombok, M, Adazu, K, Odhiambo, F, Bayoh, MN, Kiriinya, R, Slutsker, L, Hamel, MJ, Williamson, J, Hightower, A, Laserson, KF, Feikin, DR (2010) Geospatial distribution and determinants of child mortality in rural western Kenya 2002-2005. Trop Med Int Health 15: pp. 423-433 CrossRef
    34. Tarboton, DG (1997) A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resour Res 33: pp. 309-319 CrossRef
    35. Breiman, L (2001) Random forests. Mach Learn 45: pp. 5-32 CrossRef
    36. Guisan, A, Zimmermann, NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135: pp. 147-186 CrossRef
    37. Hern谩ndez, J, N煤帽ez, I, Bacigalupo, A, Cattan, PE (2013) Modeling the spatial distribution of Chagas disease vectors using environmental variables and people's knowledge. Int J Health Geogr 12: pp. 29 CrossRef
    38. Bisrat, SA, White, MA, Beard, KH, Richard Cutler, D (2011) Predicting the distribution potential of an invasive frog using remotely sensed data in Hawaii. Divers Distrib 18: pp. 648-660 CrossRef
    39. Breiman, L, Friedman, JH, Olshen, RA, Stone, CJ (1984) Classification and Regression Trees (CART). Wadsworth International Group, Belmont, CA, USA
    40. Liaw, A, Wiener, M (2002) Classification and regression by randomForest. R News 2: pp. 18-22
    41. Liu, C, Berry, PM, Dawson, TP, Pearson, RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28: pp. 385-393 CrossRef
    42. Swets, JA (1988) Measuring the accuracy of diagnostic systems. Science 240: pp. 1285-1293 CrossRef
    43. Package 鈥淪DMTools鈥?/strong> http://cran.r-project.org/web/packages/SDMTools/SDMTools.pdf
    44. Grabs, T, Seibert, J, Bishop, K, Laudon, H (2009) Modeling spatial patterns of saturated areas: a comparison of the topographic wetness index and a dynamic distributed model. J Hydrol 373: pp. 15-23 CrossRef
    45. Amek, N, Bayoh, MN, Hamel, M, Lindblade, KA, Gimnig, JE, Odhiambo, F, Laserson, KF, Slutsker, L, Smith, TA, Vounatsou, P (2012) Spatial and temporal dynamics of malaria transmission in rural Western Kenya. Parasit Vectors 5: pp. 1 CrossRef
    46. Omumbo, JA, Hay, SI, Snow, RW, Tatem, AJ, Rogers, DJ (2005) Modelling malaria risk in East Africa at high-spatial resolution. Trop Med Int Health 10: pp. 557-566 CrossRef
    47. Moiroux, N, Dj猫nontin, A, Bio-Bangana, AS, Chandre, F, Corbel, V, Guis, H (2014) Spatio-temporal analysis of abundances of three malaria vector species in southern Benin using zero-truncated models. Parasit Vectors 7: pp. 1-11 CrossRef
    48. Jacob, BG, Muturi, E, Halbig, P, Mwangangi, J, Wanjogu, RK, Mpanga, E, Funes, J, Shililu, JI, Githure, J, Regens, JL, Novak, RJ (2007) Environmental abundance of Anopheles (Diptera: Culicidae) larval habitats on land cover change sites in Karima Village, Mwea Rice Scheme, Kenya. Am J Trop Med Hyg 76: pp. 73-80 CrossRef
    49. Strauss, B, Biedermann, R (2007) Evaluating temporal and spatial generality: how valid are species鈥揾abitat relationship models?. Ecol Model 204: pp. 104-114 CrossRef
  • 刊物主题:Public Health; Geographical Information Systems/Cartography; Human Geography; Epidemiology;
  • 出版者:BioMed Central
  • ISSN:1476-072X
文摘
Background Predictive models of malaria vector larval habitat locations may provide a basis for understanding the spatial determinants of malaria transmission. Methods We used four landscape variables (topographic wetness index [TWI], soil type, land use-land cover, and distance to stream) and accumulated precipitation to model larval habitat locations in a region of western Kenya through two methods: logistic regression and random forest. Additionally, we used two separate data sets to account for variation in habitat locations across space and over time. Results Larval habitats were more likely to be present in locations with a lower slope to contributing area ratio (i.e. TWI), closer to streams, with agricultural land use relative to nonagricultural land use, and in friable clay/sandy clay loam soil and firm, silty clay/clay soil relative to friable clay soil. The probability of larval habitat presence increased with increasing accumulated precipitation. The random forest models were more accurate than the logistic regression models, especially when accumulated precipitation was included to account for seasonal differences in precipitation. The most accurate models for the two data sets had area under the curve (AUC) values of 0.864 and 0.871, respectively. TWI, distance to the nearest stream, and precipitation had the greatest mean decrease in Gini impurity criteria in these models. Conclusions This study demonstrates the usefulness of random forest models for larval malaria vector habitat modeling. TWI and distance to the nearest stream were the two most important landscape variables in these models. Including accumulated precipitation in our models improved the accuracy of larval habitat location predictions by accounting for seasonal variation in the precipitation. Finally, the sampling strategy employed here for model parameterization could serve as a framework for creating predictive larval habitat models to assist in larval control efforts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700