L744,832 and Everolimus Induce Cytotoxic and Cytostatic Effects in Non-Hodgkin Lymphoma Cells
详细信息    查看全文
  • 作者:José Mendes ; Ana Cristina Gonçalves ; Raquel Alves…
  • 关键词:Diffuse Large B ; cell Lymphoma ; Burkitt’s lymphoma ; Everolimus ; L744 ; 832 ; Apoptosis
  • 刊名:Pathology & Oncology Research
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:22
  • 期:2
  • 页码:301-309
  • 全文大小:1,199 KB
  • 参考文献:1.Shankland KR, Armitage JO, Hancock BW (2012) Non-Hodgkin lymphoma. Lancet 380(9844):848–57CrossRef PubMed
    2.Stein H, Warnke RA, Chan WC, Jaffe ES, Chan JKC, Gatter KC, Campo E (2008) Diffuse large B-cell lymphoma, not otherwise specified. In: Swerdlow S, Campo E, Harris N, Jaffe E, Pileri S, Stein H et al (eds) WHO classification of tumours of haematopoietic and lymphoid tissues. IARC, Lyon, pp 233–237
    3.Schneider C, Pasqualucci L, Dalla-Favera R (2011) Molecular pathogenesis of diffuse large B-cell lymphoma. Semin Diagn Pathol 28(2):167–177CrossRef PubMed PubMedCentral
    4.Lenz G, Staudt LM (2010) Aggressive lymphomas. N Engl J Med 362(15):1417–1429CrossRef PubMed
    5.Kenkre VP, Stock W (2009) Burkitt lymphoma/leukemia: improving prognosis. Clin Lymphoma Myeloma 9(Suppl 3):S231–8CrossRef PubMed
    6.Bornkamm GW (2009) Epstein-Barr virus and its role in the pathogenesis of Burkitt’s lymphoma: an unresolved issue. Semin Cancer Biol 19(6):351–65CrossRef PubMed
    7.Vose JM, Chiu BC, Cheson BD, Dancey J, Wright J (2002) Update on epidemiology and therapeutics for non-Hodgkin’s lymphoma. Hematol Am Soc Hematol Educ Prog 2002:241–262CrossRef
    8.Hennessy BT, Hanrahan EO, Daly PA (2004) Non-Hodgkin lymphoma: an update. Lancet Oncol 5(6):341–353CrossRef PubMed
    9.Castagna L, Magagnoli M, Demarco M, Santoro A (2007) Lymphomas. Updat Cancer Ther 2(2):101–110CrossRef
    10.Michallet AS, Coiffier B (2009) Recent developments in the treatment of aggressive non-Hodgkin lymphoma. Blood Rev 23(1):11–23CrossRef PubMed
    11.Murawski N, Pfreundschuh M (2010) New drugs for aggressive B-cell and T-cell lymphomas. Lancet Oncol 11(11):1074–85CrossRef PubMed
    12.Parcells BW, Ikeda AK, Simms-Waldrip T, Moore TB, Sakamoto KM (2006) FMS-like tyrosine kinase 3 in normal hematopoiesis and acute myeloid leukemia. Stem Cells 24(5):1174–1184CrossRef PubMed
    13.Small D (2006) FLT3 mutations: biology and treatment. Hematol Am Soc Hematol Educ Prog 2006:178–184CrossRef
    14.Morschhauser F, Bezombes C, Jardin F (2010) Targeting molecular pathways. Education Program for the 15th Congress of European Hematology Association 4(1):118–123
    15.Hachem A, Gartenhaus RB (2005) Oncogenes as molecular targets in lymphoma. Blood 106(6):1911–1923CrossRef PubMed
    16.Easton JB, Houghton PJ (2006) MTOR and cancer therapy. Oncogene 25(48):6436–6446CrossRef PubMed
    17.Polivka J Jr, Janku F (2014) Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther 142(2):164–175CrossRef PubMed
    18.Niemann CU, Wiestner A (2013) B-cell receptor signaling as a driver of lymphoma development and evolution. Semin Cancer Biol 23P:410–421CrossRef
    19.Bojarczuk K, Bobrowicz M, Dwojak M, Miazek N, Zapala P, Bunes A, Siernicka M, Rozanska M, Winiarska M (2015) B-cell receptor signaling in the pathogenesis of lymphoid malignancies. Blood Cells Mol Dis 55(3):255–65. doi:10.​1016/​j.​bcmd.​2015.​06.​016 CrossRef PubMed
    20.Costa CB, Casalta-Lopes J, Andrade C, Moreira D, Oliveira A, Gonçalves AC, Alves V, Silva T, Dourado M, Nascimento-Costa JM, Sarmento-Ribeiro AB (2012) Farnesyltransferase inhibitors: molecular evidence of therapeutic efficacy in acute lymphoblastic leukemia through cyclin D1 inhibition. Anticancer Res 32(3):831–838PubMed
    21.Song SY, Meszoely IM, Coffey RJ, Pietenpol JA, Leach SD (2000) K-Ras-independent effects of the farnesyl transferase inhibitor L744,832 on cyclin B1/Cdc2 kinase activity, G2/M cell cycle progression and apoptosis in human pancreatic ductal adenocarcinoma cells. Neoplasia 2(3):261–272CrossRef PubMed PubMedCentral
    22.Adjei AA, Davis JN, Erlichman C, Svingen PA, Kaufmann SH (2000) Comparison of potential markers of farnesyltransferase inhibition. Clin Cancer Res 6(6):2318–2325PubMed
    23.Beck LA, Hosick TJ, Sinensky M (1990) Isoprenylation is required for the processing of the lamin a precursor. J Cell Biol 110(5):1489–1499CrossRef PubMed
    24.Kilic F, Salas-Marco J, Garland J, Sinensky M (1997) Regulation of prelamin A endoprotease activity by prelamin A. FEBS Lett 414(1):65–68CrossRef PubMed
    25.Brunner TB, Hahn SM, Gupta AK, Muschel RJ, McKenna WG, Bernhard EJ (2003) Farnesyltransferase inhibitors: an overview of the results of preclinical and clinical investigations. Cancer Res 63(18):5656–5668PubMed
    26.Appels NM, Beijnen JH, Schellens JH (2005) Development of farnesyl transferase inhibitors: a review. Oncologist 10(8):565–578CrossRef PubMed
    27.Chan S (2004) Targeting the mammalian target of rapamycin (mTOR): a new approach to treating cancer. Br J Cancer 91(8):1420–1424CrossRef PubMed PubMedCentral
    28.Wolpin BM, Hezel AF, Abrams T, Blaszkowsky LS, Meyerhardt JA, Chan JA, Enzinger PC, Allen B, Clark JW, Ryan DP, Fuchs CS (2009) Oral mTOR inhibitor everolimus in patients with gemcitabine-refractory metastatic pancreatic cancer. J Clin Oncol 27(2):193–198CrossRef PubMed PubMedCentral
    29.Frost P, Moatamed F, Hoang B, Shi Y, Gera J, Yan H, Frost F, Gibbons J, Lichtenstein A (2004) In vivo antitumor effects of the mTOR inhibitor CCI-779 against human multiple myeloma cells in a xenograft model. Blood 104(13):4181–4187CrossRef PubMed
    30.Wendel HG, De Stanchina E, Fridman JS, Malina A, Ray S, Kogan S, Cordon-Cardo C, Pelletier J, Lowe SW (2004) Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428(6980):332–337CrossRef PubMed
    31.Houghton PJ (2010) Everolimus. Clin Cancer Res 16(5):1368–1372CrossRef PubMed PubMedCentral
    32.Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182(3):311–322CrossRef PubMed
    33.Yang Q, Guan KL (2007) Expanding mTOR signaling. Cell Res 17(8):666–681CrossRef PubMed
    34.Kelly KR, Rowe JH, Padmanabhan S, Nawrocki ST, Carew JS (2011) Mammalian target of rapamycin as a target in hematological malignancies. Target Oncol 6(1):53–61CrossRef PubMed
    35.Recher C, Dos Santos C, Demur C, Payrastre B (2005) MTOR, a new therapeutic target in acute myeloid leukemia. Cell Cycle 4(11):1540–1549CrossRef PubMed
    36.Sander S, Calado DP, Srinivasan L, Kochert K, Zhang B, Rosolowski M, Rodig SJ, Holzmann K, Stilgenbauer S, Siebert R, Bullinger L, Rajewsky K (2012) Synergy between PI3K signaling and MYC in Burkitt lymphomagenesis. Cancer Cell 22:167–179CrossRef PubMed PubMedCentral
  • 作者单位:José Mendes (1)
    Ana Cristina Gonçalves (1) (2) (3)
    Raquel Alves (1) (2) (3)
    Joana Jorge (1) (2)
    Ana Pires (1) (2)
    Ana Ribeiro (1)
    Ana Bela Sarmento-Ribeiro (1) (2) (3) (4)

    1. University Clinic of Hematology and Applied Molecular Biology, Faculty of Medicine University of Coimbra – FMUC, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal
    2. Center of Investigation on Environment Genetic and Oncobiology – CIMAGO, FMUC, Coimbra, Portugal
    3. Center for Neuroscience and Cell Biology – CNC.IBILI, University of Coimbra, Coimbra, Portugal
    4. Clinical Hematology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal
  • 刊物主题:Cancer Research; Oncology; Pathology; Immunology; Biomedicine general;
  • 出版者:Springer Netherlands
  • ISSN:1532-2807
文摘
Non-Hodgkin Lymphoma (NHL) constitutes a very heterogeneous group of diseases with different aggressiveness. Diffuse large B-cell lymphoma (DLBCL) and Burkitt’s lymphoma (BL) are two clinically aggressive lymphomas from the germinal center, very heterogeneous and with different genetic signatures. Several intracellular pathways are involved in lymphomagenesis, being BCR/PI3K/AKT/mTOR and RAS/RAF pathways the most frequently ones. In this context the therapeutic potential of a mTOR inhibitor – everolimus – and a RAS/RAF pathway inhibitor – L744,832 – was evaluated in two NHL cell lines. Farage and Raji cells were cultured in the absence and presence of several concentrations of everolimus and L744,832 in monotherapy and in combination with each other, as well as in association with the conventional chemotherapy drug vincristine. Our results show that everolimus and L744,832 induce antiproliferative and cytotoxic effect in a time-, dose-, and cell line-dependent manner, inducing cell death mainly by apoptosis. A potentiation effect was observed when the drugs were used in combination. In conclusion, the results suggest that everolimus and L744,832, alone or in combination, could provide therapeutic benefits in these subtypes of NHL.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700