The fractional Landau–Lifshitz–Gilbert equation and the heat flow of harmonic maps
详细信息    查看全文
  • 作者:1. College of Mathematics and Statistics ; Chongqing University ; Chongqing ; 401331 People’s Republic of China2. Institute of Applied Physics and Computational Mathematics ; P.O. Box 8009 ; Beijing ; 100088 People’s Republic of China
  • 关键词:35Qxx – 58E20 – 82Dxx
  • 刊名:Calculus of Variations and Partial Differential Equations
  • 出版年:2011
  • 出版时间:September 2011
  • 年:2011
  • 卷:42
  • 期:1-2
  • 页码:1-19
  • 全文大小:259.1 KB
  • 参考文献:1. Alouges F., Soyeur A.: On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness. Nonl. Anal. TMA 19(11), 1071–1084 (1992)
    2. Carbou G., Fabrie P.: Time average in micromagnetism. J. Differ. Equ. 147(2), 383–409 (1998)
    3. Chang N.-H., Uhlenbeck K.: Schr?dinger maps. Commun. Pure Appl. Math. 53(5), 0590–0602 (2000)
    4. Chen Y.: The weak solutions to the evolution problems of harmonic maps. Math. Z. 201, 69–74 (1989)
    5. Chen Y., Struwe M.: Existence and partial regularity for the het flow for harmonic maps. Math. Z. 201, 83–103 (1989)
    6. Coifman, R., Meyer, Y.: Nonlinear harmonic analysis, operator theory and P.D.E. In: Beijing Lectures in Harmonic Analysis, pp. 3–45. Princeton University Press (1986)
    7. Constantin P.: Energy spectrum of quasigeostrophic turbulence. Phys. Rev. Lett. 89, 184501 (2002)
    8. Constantin P.: On the Euler equations of incompressible fluids. Bull. Am. Math. Soc. 44(4), 603–621 (2007)
    9. Constantin P., Cordoba D., Wu J.: On the critical dissipative quasi-geostrophic equations. Indiana Univ. Math. J. 50, 97–107 (2001)
    10. Constantin P., Majda A., Tabak E.: Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar. Nonlinearity 7, 1495–1533 (1994)
    11. Constantin P., Wu J.: Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30, 937–948 (1999)
    12. Ding W., Wang Y.: Schr?dinger flow of maps into symplectic manifolds. Sci. China Ser. A 41(7), 746–755 (1998)
    13. Ding, S., Wang, C.: Finite time singularity of the Landau-Lifshitz-Gilbert equation. Int. Math. Res. Not. 2007, 1–25 (2007)
    14. Ding W., Tang H., Zeng C.: Self-similar solutions of Schrodinger flows. Calc. Var. 34(2), 267–277 (2009)
    15. Eells J., Sampson H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86, 109–160 (1964)
    16. Gilbert T.L.: A Lagrangian formulation of gyromagnetic equation of the magnetization field. Phys. Rev. 100, 1243–1255 (1955)
    17. Guan M., Gustafson S., Tsai T.P.: Global existence and blow-up for harmonic map heat flow. J. Differ. Equ. 246, 1–20 (2009)
    18. Guo B., Hong M.: The Landau-Lifshitz equation of the ferromagnetic spin chain and harmonic maps. Calc. Var. 1, 311–334 (1993)
    19. Gustafson, S., Nakanishi, K., Tsai, T.P.: Asymptotic stability, concentration, and oscillation in harmonic map heat-flow. Landau-Lifshitz, and Schrodinger maps on R 2. Commun. Math. Phys. 300, 205–242 (2010)
    20. Ju N.: Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space. Commun. Math. Phys. 251, 365–376 (2004)
    21. Ju N.: The Maximum principle and the global attractor for the dissipative 2d quasi-geostrophic equations. Commun. Math. Phys. 155, 161–181 (2005)
    22. Kato T.: Liapunov Functions and Monotonicity in the Navier-Stokes Equations, Lecture Notes in Mathematics, vol. 1450. Springer-Verlag, Berlin (1990)
    23. Kato T., Ponce G.: Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure Appl. Math. 41(7), 891–907 (1988)
    24. Kenig C., Ponce G., Vega L.: Well-posedness of the initial value problem for the Korteweg-de Vries equation. J. Am. Math. Soc. 4, 323–347 (1991)
    25. Kenig C., Ponce G., Vega L.: Well-posedness and scattering results for the generalized korteweg-de Vries equation via the contraction principle. Commun. Pure Appl. Math. 46(4), 453–620 (1993)
    26. Landau, L.D., Lifshitz, E.M.: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowj. 8, 153–169 (1935); Reproduced in: Collected papers of L.D. Landau, pp. 101–114. Pergamon Press, New York (1965)
    27. Lin F., Wang C.: The analysis of harmonic maps and their heat flows. World Scientific, River Edge (2008)
    28. Lions, J.L.: Quelques methodes de resolution des problemes aux limits non lineeaires. Dunod, Paris (1969)
    29. Liu X.: Partial regularity for the Landau-Lifshitz systems. Calc. var. 20(2), 153–173 (2004)
    30. Miller K.S., Ross B.: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York (1993)
    31. Nahmod A., Stefanov A., Uhlenbeck K.: On Schr?dinger maps. Commun. Pure Appl. Math. 56(1), 114–151 (2003)
    32. Podlubny I.: Fractional Differential Equations, Mathematics in Science and Engineering, vol. 198. Academic Press, San Diego (1999)
    33. Shatah J., Zeng C.: Schr?dinger maps and anti-ferromagnetic chains. Commun. Math. Phys. 262, 299–315 (2006)
    34. Sulem P.L., Sulem C., Bardos C.: On the continuous limit for a system of classical spins. Commun. Math. Phys. 107, 431–454 (1986)
    35. Stein E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)
    36. Struwe M.: On the evolution of harmonic mappings of Riemannian surfaces. Comm. Math. Helv. 60, 558–581 (1985)
    37. Tarasov V.E.: Fractional Heisenberg equation. Phys. Lett. A 372, 2984–2988 (2008)
    38. Temam R.: Infinite-dimensional dynamical systems in mechanics and physics. Springer-Verlag, New York (1998)
  • 作者单位:http://www.springerlink.com/content/15j4137383832575/
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Analysis
    Systems Theory and Control
    Calculus of Variations and Optimal Control
    Mathematical and Computational Physics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0835
文摘
In this paper, we prove the existence of global weak solutions to the periodic fractional Landau–Lifshitz–Gilbert equation through the Ginzburg–Landau approximation and the Galerkin approximation. Since the nonlinear term is nonlocal and of full order of the equation, some special structures of the equation, the commutator estimate and some calculus inequalities of fractional order are exploited to get the convergence of the approximating solutions. The equation considered in this paper can also be regarded as a generalization of the heat flow of harmonic maps to the fractional order.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700