BpMADS12 mediates endogenous hormone signaling: effect on plant development Betula platyphylla
详细信息    查看全文
  • 作者:Huiyu Li ; Danyang Wu ; Zijia Wang ; Feifei Liu&#8230
  • 关键词:Betula platyphylla ; BpMADS12 ; Overexpression ; Endogenous hormone ; Plant development
  • 刊名:Plant Cell, Tissue and Organ Culture
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:124
  • 期:1
  • 页码:169-180
  • 全文大小:1,609 KB
  • 参考文献:Ahn MS, Kim YS, Han JY, Yoon ES, Choi YE (2015) Panax ginseng PgMADS1, an AP1/FUL-like MADS-box gene, is activated by hormones and is involved in inflorescence growth. Plant Cell Tiss Organ Cult 122:161鈥?73CrossRef
    Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, Vergara-Silva F, Yanofsky MF (2000) MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J 24:457鈥?66
    Arora R, Agarwal P, Ray S, Singh AK, Singh VP, Tyagi AK, Kapoor S (2007) MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genom 8:242CrossRef
    Burgeff C, Liljegren SJ, Tapia-Lopez R, Yanofsky MF, Alvarez-Buylla ER (2002) MADS-box gene expression inlateral primordia, meristems and differentiated tissues of Arabidopsis thaliana roots. Planta 214:365鈥?72CrossRef PubMed
    Burko Y, Shleizer-Burko S, Yanai O, Shwartz I, Zelnik ID, Jacob-Hirsch J, Kela I, Eshed-Williams L, Ori N (2013) A role for APETALA1/fruitfull transcription factors in tomato leaf development. Plant Cell 25:2070鈥?083PubMedCentral CrossRef PubMed
    Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J 16:735鈥?43CrossRef PubMed
    Cseke LJ, Zheng J, Podila GK (2003) Characterization of PTM5 in aspen trees: a MADS-box gene expressed during woody vascular development. Gene 318:55鈥?7CrossRef PubMed
    De Oliveira Dias BF, Simoes-Araujo JL, Russo CAM, Margis R, AlvesFerreira M (2005) Unraveling MADS-box gene family in Eucalyptus spp. : a starting point to an understanding of their developmental role in trees. Genet Mol Biol 28:501鈥?10CrossRef
    Decroocq V, Zhu X, Kauffman M, Kyozuka J, Peacock WJ, Dennis ES, Llewellyn DJ (1999) A TM3-like MADS-box gene from Eucalyptus expressed in both vegetative and reproductive tissues. Gene 228:155鈥?60CrossRef PubMed
    Fridman Y, Savaldi-Goldstein S (2013) Brassinosteroids in growth control: how, when and where. Plant Sci 209:24鈥?1CrossRef PubMed
    Garay-Arroyo A, Ortiz-Moreno E, de la Paz S谩nchez M, Murphy AS, Garc铆a-Ponce B, Marsch-Mart铆nez N, de Folter S, Corvera-Poir茅 A, Jaimes-Miranda F, Pacheco-Escobedo MA, Dubrovsky JG, Pelaz S, 脕lvarez-Buylla ER (2013) The MADS transcription factor XAL2/AGL14 modulates auxin transport during Arabidopsis root development by regulating PIN expression. EMBO J 32:2884鈥?895PubMedCentral CrossRef PubMed
    Goloveshkina EN, Shchennikova AV, Kamionskaya AM, Skryabin KG, Shulga OA (2012) Influence of ectopic expression of Asteraceae MADS box genes on plant ontogeny in tobacco. Plant Cell Tiss Organ Cult 109:61鈥?1CrossRef
    Gutierrez-Cortines ME, Davies B (2000) Beyond the ABCs: ternary complex formation in the control of floral organ identity. Trends Plant Sci 5:471鈥?76CrossRef PubMed
    Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297鈥?00PubMedCentral CrossRef PubMed
    Hoenicka H, Nowitzki O, Hanelt D, Fladung M (2008) Heterologous overexpression of the birch FRUITFULL-like MADS-box gene BpMADS4 prevents normal senescence and winter dormancy in Populus tremula L. Planta 227:1001鈥?011CrossRef PubMed
    Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Report 5:387鈥?05CrossRef
    Kaufmann K, Mui帽o JM, Jauregui R, Airoldi CA, Smaczniak C, Krajewski P, Angenent GC (2009) Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol 7:e1000090PubMedCentral CrossRef PubMed
    Khanday I, Yadav SR, Vijayraghavan U (2013) Rice LHS1/OsMADS1 controls floret meristem specification by coordinated regulation of transcription factors and hormone signaling pathways. Plant Physiol 161:1970鈥?983PubMedCentral CrossRef PubMed
    Kimura Y, Aoki S, Ando E, Kitatsuji A, Watanabe A, Ohnishi M, Takahashi K, Inoue SI, Nakamichi N, Tamada Y, Kinoshita T (2015) A Flowering Integrator, SOC1, Affects Stomatal Opening in Arabidopsis thaliana. Plant Cell Physiol 56:640鈥?49CrossRef PubMed
    Lescot M, D茅hais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouz茅 P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325鈥?27PubMedCentral CrossRef PubMed
    Li H, Liang W, Hu Y, Zhu L, Yin C, Xu J, Dreni L, Kater MM, Zhang D (2011) Rice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in specifying floral organ identities and meristem fate. Plant Cell 23:2536鈥?552PubMedCentral CrossRef PubMed
    Liu FF, Li HY, Wang S, Liu GF (2011) Cloning and periodic expression of BpSOC1 Gene in Betula platyphylla. J Northeast For Univ 4:1鈥?
    Liu Y, Xu HW, Jiang J, Liu GF (2014) Family selection of birch tetraploid half-sibling based on seed vigor and seedling growth traits. J Beijing For Univ 2:74鈥?0
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402鈥?08CrossRef PubMed
    Lovisetto A, Masiero S, Rahim MA, Mendes MA, Casadoro G (2015) Fleshy seeds form in the basal Angiosperm Magnolia grandiflora and several MADS-box genes are expressed as fleshy seed tissues develop. Evol Dev 17:82鈥?1CrossRef PubMed
    Mao L, Begum D, Chuang HW, Budiman MA, Szymkowiak EJ, Irish EE, Wing RA (2000) JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development. Nature 406:910鈥?13CrossRef PubMed
    Mohri T, Igasaki T, Futamura N, Shinohara K (1999) Morphological changes in transgenic poplar induced by expression of the rice homeobox gene OSH1. Plant Cell Rep 18:816鈥?19CrossRef
    Nakamura T, Fukuda T, Nakano M, Hasebe M, Kameya T, Kanno A (2005) The modified ABC model explains the development of the petaloid perianth of Agapanthus praecox ssp. orientalis (Agapanthaceae) flowers. Plant Mol Biol 58:435鈥?45CrossRef PubMed
    Nayar S, Sharma R, Tyagi AK, Kapoor S (2013) Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis. J Exp Bot 64:4239鈥?253PubMedCentral CrossRef PubMed
    Parenicova L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15:1538鈥?551PubMedCentral CrossRef PubMed
    Pasonen HL, Sepp盲nen SK, Degefu Y, Rytk枚nen A, von Weissenberg K, Pappinen A (2004) Field performance of chitinase transgenic silver birches (Betula pendula): resistance to fungal diseases. Theor Appl Genet 109:562鈥?70CrossRef PubMed
    Perala DA, Alm AA (1990) Reproductive ecology of birch: a review. For Ecol Manage 32:1鈥?8CrossRef
    Podila GK, Cseke LJ, Sen B, Karnosky DF (2004) Application of aspen MADS-BOX genes to alter reproduction and development in trees. United States patent no.US 2004/0019933 A1
    Pradko AG, Litvinovskaya RP, Sauchuk AL, Drach SV, Baranovsky AV, Zhabinskii VN, Mirantsova TV, Khripach VA (2015) A new ELISA for quantification of brassinosteroids in plants. Steroids 97:78鈥?6CrossRef PubMed
    Rounsley SD, Ditta GS, Yanofsky MF (1995) Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7:1259鈥?269PubMedCentral CrossRef PubMed
    Sch枚nrock N, Bouveret R, Leroy O, Borghi L, K枚hler C, Gruissem W, Hennig L (2006) Polycomb-group proteins repress the floral activator AGL19 in the FLC-independent vernalization pathway. Genes 20:1667鈥?678CrossRef
    Walden AR, Wang DY, Walter C, Gardner RC (1998) A large family of TM3 MADS-box cDNA in Pinus radiata includes two members with deletions of the conserved K domain. Plant Sci 138:167鈥?76CrossRef
    Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78:203鈥?09CrossRef PubMed
    Yang G, Chen S, Wang S, Liu GF, Li HY, Huang HJ, Jiang J (2015) BpGH3.5, an early auxin-response gene, regulates root elongation in Betula platyphylla 脳 Betula pendula. Plant Cell Tiss Organ Cult 120:239鈥?50CrossRef
    Zhan YG, Liu ZH, Wang YC, Yang CP, Liu GF (2001) Transformation of insect resistant gene into birch. J Northeast For Univ 29:4鈥?
    Zhao Y, Li XY, Chen WJ, Peng XJ, Cheng X, Zhu SW, Cheng BJ (2011) Whole-genome survey and characterization of MADS-box gene family in maize and sorghum. Plant Cell Tiss Organ Cult 105:159鈥?73CrossRef
  • 作者单位:Huiyu Li (1)
    Danyang Wu (1)
    Zijia Wang (1)
    Feifei Liu (1)
    Guifeng Liu (1)
    Jing Jiang (1)

    1. State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Plant Physiology
  • 出版者:Springer Netherlands
  • ISSN:1573-5044
文摘
BpMADS12 is one of the SOC1-like genes isolated from Betula platyphylla. The expression pattern of BpMADS12 was detected in both vegetative and reproductive organs by real-time quantitative RT-PCR and promoter analyses. Analysis of the promoter region suggested that BpMADS12 is involved in abiotic stress and hormone responses. In this study, BpMADS12 was expressed in transgenic birch under the control of the CaMV 35S promoter. Our results showed that the transgene had no effect on flowering time, whereas it affected the number and size of female inflorescences and decreased the seed vigor. Plant morphology was also affected; the height and ground diameter were significantly greater in the transgenic birch than in nontransgenic line (NT). Levels of brassinosteroid (BR) and zeatinriboside (ZR) were higher in transgenic lines than in NT due to the overexpression of BpMADS12 in birch, which resulted in the up-regulation of some BR and ZR biosynthesis and signaling genes. We propose that BpMADS12is involved in hormone biosynthesis and signal-mediated growth and development. Keywords Betula platyphylla BpMADS12 Overexpression Endogenous hormone Plant development

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700