A novel Streptomyces spp. integration vector derived from the S. venezuelae phage, SV1
详细信息    查看全文
  • 作者:Bahgat Fayed (1)
    Ellen Younger (2)
    Gabrielle Taylor (1)
    Margaret C M Smith (1)

    1. Department of Biology
    ; University of York ; York ; YO10 5DD ; UK
    2. School of Medical Sciences
    ; Institute of Medical Sciences ; University of Aberdeen ; Aberdeen ; AB25 2ZD ; UK
  • 关键词:Streptomyces ; Cloning ; Integration vector ; Serine integrase ; Bacteriophage ; SV1
  • 刊名:BMC Biotechnology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:14
  • 期:1
  • 全文大小:708 KB
  • 参考文献:1. Chater, KF (2006) Streptomyces inside-out: a new perspective on the bacteria that provide us with antibiotics. Philos Trans R Soc Lond B Biol Sci 361: pp. 761-768 CrossRef
    2. Baltz, RH (2011) Strain improvement in actinomycetes in the postgenomic era. J Ind Microbiol Biotech 38: pp. 657-666 CrossRef
    3. Baltz, RH (2012) Streptomyces temperate bacteriophage integration systems for stable genetic engineering of actinomycetes (and other organisms). J Ind Microbiol Biotech 39: pp. 661-672 CrossRef
    4. Boccard, F, Smokvina, T, Pernodet, JL, Friedmann, A, Guerineau, M (1989) Structural analysis of loci involved in pSAM2 site-specific integration in Streptomyces. Plasmid 21: pp. 59-70 CrossRef
    5. Smokvina, T, Mazodier, P, Boccard, F, Thompson, CJ, Guerineau, M (1990) Construction of a series of pSAM2-based integrative vectors for use in actinomycetes. Gene 94: pp. 53-59 CrossRef
    6. Bierman, M, Logan, R, O'Brien, K, Seno, ET, Rao, RN, Schoner, BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116: pp. 43-49 CrossRef
    7. Kuhstoss, S, Rao, RN (1991) Analysis of the integration function of the streptomycete bacteriophage 蠁C31. J Mol Biol 222: pp. 897-908 CrossRef
    8. Kuhstoss, S, Richardson, MA, Rao, RN (1991) Plasmid cloning vectors that integrate site-specifically in Streptomyces spp. Gene 97: pp. 143-146 CrossRef
    9. Khaleel, T, Younger, E, McEwan, AR, Varghese, AS, Smith, MCM (2011) A phage protein that binds 蠁C31 integrase to switch its directionality. Mol Microbiol 80: pp. 1450-1463 CrossRef
    10. Lewis, JA, Hatfull, GF (2001) Control of directionality in integrase-mediated recombination: examination of recombination directionality factors (RDFs) including Xis and Cox proteins. Nucl Acid Res 29: pp. 2205-2216 CrossRef
    11. Brown, WR, Lee, NC, Xu, Z, Smith, MCM (2011) Serine recombinases as tools for genome engineering. Methods 53: pp. 372-379 CrossRef
    12. Gregory, MA, Till, R, Smith, MCM (2003) Integration site for Streptomyces phage 蠒BT1 and the development of novel site-specific integrating vectors. J Bacteriol 185: pp. 5320-5323 CrossRef
    13. Morita, K, Yamamoto, T, Fusada, N, Komatsu, M, Ikeda, H, Hirano, N, Takahashi, H (2009) The site-specific recombination system of actinophage TG1. FEMS Microbiol Lett 297: pp. 234-240 CrossRef
    14. Stuttard, C Generalized transduction in Streptomyces species. In: Hershberger, CL, Queener, SW, Hegeman, G eds. (1989) Genetics and Molecular Biology of Industrial Microorganisms. Amercian Society of Microbiology, Washington DC, pp. 157-162
    15. Smith, MCM, Hendrix, RW, Dedrick, R, Mitchell, K, Ko, CC, Russell, D, Bell, E, Gregory, M, Bibb, MJ, Pethick, F, Jacobs-Sera, D, Herron, P, Buttner, MJ, Hatfull, G (2013) Evolutionary relationships among actinophages and a putative adaptation for growth in Streptomyces spp. J Bacteriol 195: pp. 4924-4935 CrossRef
    16. Hanssen, A-M, Sollid, JUE (2005) SCCmec in staphylococci: genes on the move. FEMS Immunol Med Microbiol 46: pp. 8-20 CrossRef
    17. Xu, Z, Thomas, L, Davies, B, Chalmers, R, Smith, MCM, Brown, WRA (2013) Accuracy and efficiency define Bxb1 integrase as the best of fifteen candidate serine recombinases for the integration of DNA into the human genome. BMC Biotech 13: pp. 87 CrossRef
    18. Santos, CN, Koffas, M, Stephanopoulos, G (2011) Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab Eng 13: pp. 392-400 CrossRef
    19. Bentley, SD, Chater, KF, Cerdeno-Tarraga, AM, Challis, GL, Thomson, NR, James, KD, Harris, DE, Quail, MA, Kieser, H, Harper, D, Bateman, A, Brown, S, Chandra, G, Chen, CW, Collins, M, Cronin, A, Fraser, A, Goble, A, Hidalgo, J, Hornsby, T, Howarth, S, Huang, CH, Kieser, T, Larke, L, Murphy, L, Oliver, K, O'Neil, S, Rabbinowitsch, E, Rajandream, MA, Rutherford, K (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: pp. 141-147 CrossRef
    20. MacNeil, DJ (1988) Characterization of a unique methyl-specific restriction system in Streptomyces avermitilis. J Bacteriol 170: pp. 5607-5612
    21. Bedford, DJ, Laity, C, Buttner, MJ (1995) Two genes involved in the phase-variable 蠒C31 resistance mechanism of Streptomyces coelicolor A3(2). J Bacteriol 177: pp. 4681-4689
    22. Floriano, B, Bibb, M (1996) afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 21: pp. 385-396 CrossRef
    23. Ikeda, H, Ishikawa, J, Hanamoto, A, Shinose, M, Kikuchi, H, Shiba, T, Sakaki, Y, Hattori, M, Omura, S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21: pp. 526-531 CrossRef
    24. Pullan, ST, Chandra, G, Bibb, MJ, Merrick, M (2011) Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes. BMC Genomics 12: pp. 175 CrossRef
    25. Chater, KF, Wilde, LC (1980) Streptomyces albus G mutants defective in the SalGI restriction-modification system. J Gen Microbiol 116: pp. 323-334
    26. Kieser, T, Bibb, MJ, Buttner, MJ, Chater, KF, Hopwood, DA (2000) Practical Streptomyces Genetics. The John Innes Foundation, Norwich
    27. Sambrook, J, Russell, DW (2001) Molecular Cloning: A Laboratory manual. Cold Spring Harbor Laboratory Press, New York
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Biotechnology
    Life Sciences
    Plant Breeding/Biotechnology
    Stem Cells
    Transgenics
  • 出版者:BioMed Central
  • ISSN:1472-6750
文摘
Background Integrating vectors based on the int/attP loci of temperate phages are convenient and used widely, particularly for cloning genes in Streptomyces spp. Results We have constructed and tested a novel integrating vector based on g27, encoding integrase, and attP site from the phage, SV1. This plasmid, pBF3 integrates efficiently in S. coelicolor and S. lividans but surprisingly fails to generate stable integrants in S. venezuelae, the natural host for phage SV1. Conclusion pBF3 promises to be a useful addition to the range of integrating vectors currently available for Streptomyces molecular genetics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700