The Electrochemical Behavior of Au/AuNPs/PNA/ZnSe-QD/ACA Electrode Towards CySH Oxidation
详细信息    查看全文
  • 作者:Azadeh Azadbakht ; Amir Reza Abbasi ; Zohreh Derikvand ; Ziba Karimi
  • 关键词:Penicillamine (PNA) ; Azodicarboxamide (ACA) ; ZnSe quantum dot ; Electrocatalytic oxidation ; Cysteine (CySH)
  • 刊名:Nano-Micro Letters
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:7
  • 期:2
  • 页码:152-164
  • 全文大小:1583KB
  • 参考文献:1.J.C. Claussen, A.D. Franklin, A. Haque, D.M. Porterfield, T.S. Fisher, Electrochemical biosensor of nanocube-augmented carbon nanotube networks. ACS Nano 3(1), 37鈥?4 (2009). doi:10.鈥?021/鈥媙n800682m CrossRef
    2.T.G. Drummond, M.G. Hill, J.K. Barton, Electrochemical DNA sensors. Nat. Biotechnol. 21(10), 1192鈥?199 (2003). doi:10.鈥?038/鈥媙bt873 CrossRef
    3.F. Patolsky, G. Zheng, C.M. Lieber, Nanowire sensors for medicine and the life sciences. Nanomedicine 1(1), 51鈥?5 (2006). doi:10.鈥?217/鈥?7435889.鈥?.鈥?.鈥?1 CrossRef
    4.M. Hung, D.M. Stanbury, Catalytic and direct oxidation of cysteine by octacyanomolybdate(V). Inorg. Chem. 44(10), 3541鈥?550 (2005). doi:10.鈥?021/鈥媔c050427c CrossRef
    5.T. Inoue, J.R. Kirchhoff, Electrochemical detection of thiols with a coenzyme pyrroloquinoline quinone modified electrode. Anal. Chem. 72(23), 5755鈥?760 (2000). doi:10.鈥?021/鈥媋c000716c CrossRef
    6.M.M. Ardakani, P. Rahimi, P.E. Karami, H.R. Zare, H. Naeimi, Electrocatalytic oxidation of cysteine by quinizarine at glassy carbon electrode. Sens. Actuators B 123(2), 763鈥?68 (2007). doi:10.鈥?016/鈥媕.鈥媠nb.鈥?006.鈥?0.鈥?15 CrossRef
    7.S. Shahrokhian, Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Anal. Chem. 73(24), 5972鈥?978 (2001). doi:10.鈥?021/鈥媋c010541m CrossRef
    8.P.C. White, N.S. Lawrence, J. Davis, R.G. Compton, Electrochemically initiated 1, 4 additions: a versatile route to the determination of thiols. Anal. Chim. Acta 447(1鈥?), 1鈥?0 (2001). doi:10.鈥?016/鈥婼0003-2670(01)01297-1 CrossRef
    9.S. Seshadri, A. Beiser, J. Selhub, P.F. Jacques, I.H. Rosenberg, R.B. D鈥橝gostino, P.W.F.N. Wilson, P.A. Wolf, Plasma homocysteine as a risk factor for dementia and alzheimer鈥檚 disease. N. Engl. J. Med. 346(7), 476鈥?83 (2002). doi:10.鈥?056/鈥婲EJMoa011613 CrossRef
    10.M.A. Hofmann, B. Kohl, M.S. Zumbach, V. Borcea, A. Bierhaus, M. Henkels, J. Amiral, W. Fiehn, R. Ziegler, P. Wahl, P.P. Nawroth, Hyperhomocyst(e)inemia and endothelial dysfunction in IDDM. Diabetes Care 20(12), 1880鈥?886 (1997). doi:10.鈥?337/鈥媎iacare.鈥?0.鈥?2.鈥?880 CrossRef
    11.E.K. Hoogeveen, P.J. Kostense, P.J. Beks, A.J.C. Mackaay, C. Jakobs, L.M. Bouter, R.J. Heine, C.D. Stehouwer, Hyper homocysteinemia is associated with an increased risk of cardiovascular disease, especially in non鈥搃nsulin dependent diabetes mellitus: a population-based study. Arterioscler. Thromb. Vasc. Biol. 18(1), 133鈥?38 (1998). doi:10.鈥?161/鈥?1.鈥婣TV.鈥?8.鈥?.鈥?33 CrossRef
    12.B. Hultberg, E. Agardh, A. Andersson, L. Brattstrom, A. Isaksson, B. Israelsson, C.D. Agardh, Increased levels of plasma homocysteine are associated with nephropathy, but not severe retinopathy in type 1 diabetes mellitus. Scand. J. Clin. Lab. Inv. 51(3), 277鈥?82 (1991). doi:10.鈥?109/鈥?036551910909161鈥? CrossRef
    13.E. Sharifi, A. Salimi, E. Shams, DNA/nickel oxide nanoparticles/osmium(III)-complex modified electrode toward selective oxidation of l -cysteine and simultaneous detection of l -cysteine and homocysteine. Bioelectrochemistry 86(6), 9鈥?1 (2012). doi:10.鈥?016/鈥媕.鈥媌ioelechem.鈥?011.鈥?2.鈥?13 CrossRef
    14.W. Wang, O. Rusin, X. Xu, K.K. Kim, J.O. Escobedo, S.O. Fakayode, K.A. Fletcher, M. Lowry, C.M. Schowalter, C.M. Lawrence, F.R. Fronczek, I.M. Warner, R.M. Strongin, Detection of homocysteine and cysteine. J. Am. Chem. Soc. 127(45), 15949鈥?5958 (2005)CrossRef
    15.G. Chwatko, E. Bald, Determination of cysteine in human plasma by high-performance liquid chromatography and ultraviolet detection after pre-column derivatization with 2-chloro-1-methylpyridinium iodide. Talanta 52(3), 509鈥?15 (2000). doi:10.鈥?016/鈥婼0039-9140(00)00394-5 CrossRef
    16.A. Sano, H. Nakamura, Chemiluminescence detection of thiols by high-performance liquid chromatography using o-Phthalaldehyde and N-(4-Aminobutyl)-N-ethylisoluminol as precolumn derivatization reagents. Anal. Sci. 14(4), 731鈥?37 (1998). doi:10.鈥?116/鈥媋nalsci.鈥?4.鈥?31 CrossRef
    17.K. Arlt, S. Brandt, J. Kehr, Amino acid analysis in five pooled single plant cell samples using capillary electrophoresis coupled to laser-induced fluorescence detection. J. Chromatogr. A 926(2), 319鈥?25 (2001). doi:10.鈥?016/鈥婼0021-9673(01)01052-4 CrossRef
    18.M. Ummadi, B.C. Weimer, Use of capillary electrophoresis and laser-induced fluorescence for attomole detection of amino acids. J. Chromatogr. A 964(1鈥?), 243鈥?53 (2002). doi:10.鈥?016/鈥婼0021-9673(02)00692-1 CrossRef
    19.F. Tanaka, N. Mase, C.F. Barbas, Determination of cysteine concentration by fluorescence increase: reaction of cysteine with a fluorogenic aldehyde. Chem. Commun. 5, 1762鈥?763 (2004). doi:10.鈥?039/鈥媌405642f CrossRef
    20.D.A.M. Zaia, K.C.L. Ribas, C.T.B.V. Zaia, Spectrophotometric determination of cysteine and/or carbocysteine in a mixture of amino acids, shampoo, and pharmaceutical products using p-benzoquinone. Talanta 50(5), 1003鈥?010 (1999). doi:10.鈥?016/鈥婼0039-9140(99)00218-0 CrossRef
    21.G. Shi, J. Lu, F. Xu, W. Sun, L. Jin, K. Yamamoto, S. Tao, J. Jin, Determination of glutathione in vivo by microdialysis using liquid chromatography with a cobalt hexacyanoferrate chemically modified electrode. Anal. Chim. Acta 391(4), 307鈥?13 (1999). doi:10.鈥?016/鈥婼0003-2670(99)00274-3 CrossRef
    22.F. Pak, K. Meral, R. Altunda艧, D. Ekinci, Self-assembled monolayers of fluorene- and nitrofluorene-terminated thiols on polycrystalline gold electrode: electrochemical and optical properties. J. Electroanal. Chem. 654(1鈥?), 20鈥?8 (2011). doi:10.鈥?016/鈥媕.鈥媕elechem.鈥?011.鈥?1.鈥?41 CrossRef
    23.S.M. Chen, J.Y. Chen, R. Thangamuthu, Electrochemical preparation of brilliant-blue-modified poly(diallyldimethylammoniumchloride) and nafion-coated glassy carbon electrodes and their electrocatalytic behavior towards oxygen and l -cysteine. Electroanalysis 20(14), 1565鈥?573 (2008). doi:10.鈥?002/鈥媏lan.鈥?00804213 CrossRef
    24.S. Ge, M. Yan, J. Lu, M. Zhang, F. Yu, J. Yu, X. Song, S. Yu, Electrochemical biosensor based on graphene oxide鈥揂u nanoclusters composites for l -cysteine analysis. Biosen. Bioelectron. 31(1), 49鈥?4 (2012). doi:10.鈥?016/鈥媕.鈥媌ios.鈥?011.鈥?9.鈥?38 CrossRef
    25.H. Hosseini, H. Ahmar, A. Dehghani, A. Bagheri, A. Tadjarodi, A.R. Fakhari, A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of l -cysteine. Biosen. Bioelectron. 42, 426鈥?29 (2013). doi:10.鈥?016/鈥媕.鈥媌ios.鈥?012.鈥?9.鈥?62 CrossRef
    26.M. Zhou, J. Ding, L.-P. Guo, Q.-K. Shang, Electrochemical behavior of l -cysteine and its detection at ordered mesoporouscarbon-modified glassy carbon electrode. Anal. Chem. 79(14), 5328鈥?335 (2007). doi:10.鈥?021/鈥媋c0703707 CrossRef
    27.M. Liu, G. Shi, L. Zhang, Y. Cheng, L. Jin, Quantum dots modified electrode and its application in electroanalysis of hemoglobin. Electrochem. Commun. 8(2), 305鈥?10 (2006). doi:10.鈥?016/鈥媕.鈥媏lecom.鈥?005.鈥?1.鈥?26 CrossRef
    28.J. Drbohlavova, V. Adam, R. Kizek, J. Hubalek, Quantum dots-characterization, preparation and usage in biological systems. Int. J. Mol. Sci. 10(2), 656鈥?73 (2009). doi:10.鈥?390/鈥媔jms10020656 CrossRef
    29.J. Aldana, Y.A. Wang, X. Peng, Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc. 123(36), 8844鈥?850 (2001). doi:10.鈥?021/鈥媕a016424q CrossRef
    30.M.J. Giz, B. Duong, N.J. Tao, In situ STM study of self-assembled mercaptopropionic acid monolayers for electrochemical detection of dopamine. J. Electroanal. Chem. 465(1), 72鈥?9 (1999). doi:10.鈥?016/鈥婼0022-0728(99)00056-X CrossRef
    31.J. Li, G. Zou, X. Hu, X. Zhang, Electrochemistry of thiol-capped CdTe quantum dots and its sensing application. J. Electroanal. Chem. 625(1), 88鈥?1 (2009). doi:10.鈥?016/鈥媕.鈥媕elechem.鈥?008.鈥?0.鈥?11 CrossRef
    32.J. Berna, M. Alajar铆n, R.A. Orenes, Azodicarboxamides as template binding motifs for the building of hydrogen-bonded molecular shuttles. J. Am. Chem. Soc. 132(31), 10741鈥?0747 (2010). doi:10.鈥?021/鈥媕a101151t CrossRef
    33.H. Cui, Y. Xu, Z.F. Zhang, Multichannel electrochemiluminescence of luminol in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled electrode. Anal. Chem. 76(14), 4002鈥?010 (2004). doi:10.鈥?021/鈥媋c049889i CrossRef
    34.J.J. Andrade, J.A. Brasil Jr, P.M.A. Farias, A. Fontes, B.S. Santos, Synthesis and characterization of blue emitting ZnSe quantum dots. Microelectron. J. 40(3), 641鈥?43 (2009). doi:10.鈥?016/鈥媕.鈥媘ejo.鈥?008.鈥?6.鈥?40 CrossRef
    35.V. Swayambunathan, D. Hayes, K.H. Schmidt, Y.X. Liao, D. Meisel, Thiol surface complexation on growing cadmium sulfide clusters. J. Am. Chem. Soc. 112(10), 3831鈥?837 (1990). doi:10.鈥?021/鈥媕a00166a017 CrossRef
    36.M.B. Gholivand, A. Azadbakht, Fabrication of a highly sensitive glucose electrochemical sensor based on immobilization of Ni(II)鈥損yromellitic acid and bimetallic Au鈥揚t inorganic鈥搊rganic hybrid nanocomposite onto carbon nanotube modified glassy carbon electrode. Electrochim. Acta 76, 300鈥?11 (2012). doi:10.鈥?016/鈥媕.鈥媏lectacta.鈥?012.鈥?5.鈥?37 CrossRef
    37.S. Antoniadou, A.D. Jannakoudakis, E. Theodoridou, Electrocatalytic reactions on carbon fibre electrodes modified by hemine II. Electro-oxidation of hydrazine. Synth. Met. 30(3), 295鈥?04 (1980). doi:10.鈥?016/鈥?379-6779(89)90652-8 CrossRef
    38.E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 101(1), 19鈥?8 (1979). doi:10.鈥?016/鈥婼0022-0728(79)80075-3 CrossRef
    39.A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley, New York, 2000)
    40.J.A. Harrison, Z.A. Khan, The oxidation of hydrazine on platinum in acid solution. J. Electroanal. Chem. 28(1), 131鈥?38 (1970). doi:10.鈥?016/鈥婼0022-0728(70)80288-1 CrossRef
    41.T.R. Ralph, M.L. Hitchman, J.P. Millington, F.C. Walsh, The electrochemistry of l-cystine and l-cysteine: part 1: Thermodynamic and kinetic studies. J. Electroanal. Chem. 375(1鈥?), 1鈥?5 (1994). doi:10.鈥?016/鈥?022-0728(94)03407-9 CrossRef
    42.Z. Galus, Fundamentals of Electrochemical Analysis (Horwood, New York, 1976)
    43.X. Tang, Y. Liu, H. Hou, T. You, Electrochemical determination of l -Tryptophan, l -Tyrosine and l -Cysteine using electrospun carbon nanofibers modified electrode. Talanta 80(5), 2182鈥?186 (2010). doi:10.鈥?016/鈥媕.鈥媡alanta.鈥?009.鈥?1.鈥?27 CrossRef
    44.R. Ojani, J.B. Raoof, E. Zarei, Preparation of poly N, N-dimethylaniline/ferrocyanide film modified carbon paste electrode: application to electrocatalytic oxidation of l -cysteine. J. Electroanal. Chem. 638(2), 241鈥?45 (2010). doi:10.鈥?016/鈥媕.鈥媕elechem.鈥?009.鈥?1.鈥?05 CrossRef
    45.J.C. Ndamanisha, J. Bai, B. Qi, L. Guo, Application of electrochemical properties of ordered mesoporous carbon to the determination of glutathione and cysteine. Anal. Biochem. 386(1), 79鈥?4 (2009). doi:10.鈥?016/鈥媕.鈥媋b.鈥?008.鈥?1.鈥?41 CrossRef
    46.J.M. Zen, A.S. Kumar, J.-C. Chen, Electrocatalytic oxidation and sensitive detection of cysteine on a lead ruthenate pyrochlore modified electrode. Anal. Chem. 73(6), 1169鈥?175 (2001). doi:10.鈥?021/鈥媋c0010781 CrossRef
    47.M.K. Amini, J.H. Khorasani, S.S. Khaloo, S. Tangestaninejad, Cobalt(II) salophen-modified carbon-paste electrode for potentiometric and voltammetric determination of cysteine. Anal. Biochem. 320(1), 32鈥?8 (2003). doi:10.鈥?016/鈥婼0003-2697(03)00355-5 CrossRef
    48.A. Salimi, S. Pourbeyram, Renewable sol鈥揼el carbon ceramic electrodes modified with a Ru-complex for the amperometric detection of l -cysteine and glutathione. Talanta 60(1), 205鈥?14 (2003). doi:10.鈥?016/鈥婼0039-9140(03)00125-5 CrossRef
    49.A. Salimi, R. Hallaj, Catalytic oxidation of thiols at preheated glassy carbon electrode modified with abrasive immobilization of multiwall carbon nanotubes: applications to amperometric detection of thiocytosine, l -cysteine and glutathione. Talanta 66(4), 967鈥?75 (2005). doi:10.鈥?016/鈥媕.鈥媡alanta.鈥?004.鈥?2.鈥?40 CrossRef
    50.W.Y. Su, S.H. Cheng, Electrocatalysis and sensitive determination of cysteine at poly(3,4-ethylenedioxythiophene)-modified screen-printed electrodes. Electrochem. Commun. 10(6), 899鈥?02 (2008). doi:10.鈥?016/鈥媕.鈥媏lecom.鈥?008.鈥?4.鈥?13 CrossRef
    51.A. Abbaspour, A. Ghaffarinejad, Electrocatalytic oxidation of l -cysteine with a stable copper鈥揷obalt hexacyanoferrate electrochemically modified carbon paste electrode. Electrochim. Acta 53(22), 6643鈥?650 (2008). doi:10.鈥?016/鈥媕.鈥媏lectacta.鈥?008.鈥?4.鈥?65 CrossRef
    52.Y.P. Dong, L. Pei, X.F. Chu, W.B. Zhang, Q.F. Zhang, Electrochemical behavior of cysteine at a CuGeO3 nanowires modified glassy carbon electrode. Electrochim. Acta 55(18), 5135鈥?141 (2010). doi:10.鈥?016/鈥媕.鈥媏lectacta.鈥?010.鈥?4.鈥?20 CrossRef
    53.P. Sweth, A.S. Kumar, Phosphomolybdic acid nano-aggregates immobilized nafion membrane modified electrode for selective cysteine electrocatalytic oxidation and anti-dermatophytic activity. Electrochim. Acta 98, 54鈥?5 (2013). doi:10.鈥?016/鈥媕.鈥媏lectacta.鈥?013.鈥?3.鈥?23 CrossRef
    54.H. Razmi, A. Azadbakht, Electrochemical characteristics of dopamine oxidation at palladium hexacyanoferrate film, electroless plated on aluminum electrode. Electrochim. Acta 50(11), 2193鈥?201 (2005). doi:10.鈥?016/鈥媕.鈥媏lectacta.鈥?004.鈥?0.鈥?01 CrossRef
    55.A.A. Ensafi, S. Behyan, Sensing of l -cysteine at glassy carbon electrode using nile blue A as a mediator. Sens. Actuators B 122(1), 282鈥?88 (2007). doi:10.鈥?016/鈥媕.鈥媠nb.鈥?006.鈥?5.鈥?35 CrossRef
    56.S.P. Stabler, P.D. Marcell, E.R. Podell, R.H. Allen, Quantitation of total homocysteine, total cysteine, and methionine in normal serum and urine using capillary gas chromatography-mass spectrometry. Anal. Biochem. 162(1), 185鈥?96 (1987). doi:10.鈥?016/鈥?003-2697(87)90026-1 CrossRef
  • 作者单位:Azadeh Azadbakht (1)
    Amir Reza Abbasi (1)
    Zohreh Derikvand (1)
    Ziba Karimi (1)

    1. Department of Chemistry, Faculty of Science, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
  • 刊物类别:Nanotechnology and Microengineering; Nanotechnology; Nanoscale Science and Technology;
  • 刊物主题:Nanotechnology and Microengineering; Nanotechnology; Nanoscale Science and Technology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2150-5551
文摘
This work describes the electrochemical behavior of azodicarboxamide (ACA) film immobilized on the surface of penicillamine (PNA)/ZnSe-quantum dot (ZnSe-QD) gold nanoparticle (AuNPs) Au electrode. Electrocatalytic activity of modified electrode toward the oxidation of cysteine (CySH) was investigated. The surface structure and composition of the sensor were characterized by scanning electron microscopy (SEM). Oxidation of CySH on the surface of modified electrode was investigated with cyclic voltammetry, electrochemical impedance spectroscopy (EIS), hydrodynamic voltammetry and chronoamperometry methods. The results show that the PNA/ZnSe-QD/ACA film displays excellent electrochemical catalytic activities towards CySH oxidation. The modified electrode shows reproducible behavior and high level of stability during the electrochemical experiments. Also it has short response time, low detection limit, high sensitivity and low operation potential, which can be used as an amperometric sensor for monitoring of CySH. The proposed modified electrode was successfully used for determination of CySH in real sample such as human serum. Keywords Penicillamine (PNA) Azodicarboxamide (ACA) ZnSe quantum dot Electrocatalytic oxidation Cysteine (CySH)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700