Bacterial Diversity and Community Structure in Two Bornean Nepenthes Species with Differences in Nitrogen Acquisition Strategies
详细信息    查看全文
  • 作者:Wiebke Sickel ; T. Ulmar Grafe ; Ivonne Meuche ; Ingolf Steffan-Dewenter…
  • 关键词:Nepenthes ; Carnivorous plants ; Next ; generation sequencing ; 16s rDNA ; Plant ; microbe interactions
  • 刊名:Microbial Ecology
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:71
  • 期:4
  • 页码:938-953
  • 全文大小:697 KB
  • 参考文献:1.Juniper BE, Robins RJ, Joel D (1989) The carnivorous plants. Academic Press, London
    2.Clarke MC (1997) Nepenthes of Borneo. Nat. Hist. Publ
    3.Clarke MC (2001) Nepenthes of Sumatra and Peninsular Malaysia. Nat. Hist. Publ
    4.Schulze W, Frommer WB, Ward JM (1999) Transporters for ammonium, amino acids and peptides are expressed in pitchers of the carnivorous plant Nepenthes. Plant J 17:637–646CrossRef PubMed
    5.Gaume L, Forterre Y (2007) A viscoelastic deadly fluid in carnivorous pitcher plants. PLoS One 2:e1185. doi:10.​1371/​journal.​pone.​0001185 CrossRef PubMed PubMedCentral
    6.Gaume L, Gorb S, Rowe N (2002) Function of epidermal surfaces in the trapping efficiency of Nepenthes alata pitchers. New Phytol 156:479–489. doi:10.​1046/​j.​1469-8137.​2002.​00530.​x CrossRef
    7.Riedel M, Eichner A, Jetter R (2003) Slippery surfaces of carnivorous plants: composition of epicuticular wax crystals in Nepenthes alata Blanco pitchers. Planta 218:87–97. doi:10.​1007/​s00425-003-1075-7 CrossRef PubMed
    8.Riedel M, Eichner A, Meimberg H, Jetter R (2007) Chemical composition of epicuticular wax crystals on the slippery zone in pitchers of five Nepenthes species and hybrids. Planta 225:1517–1534. doi:10.​1007/​s00425-006-0437-3 CrossRef PubMed
    9.Pavlovič A, Masarovičová E, Hudák J (2007) Carnivorous syndrome in Asian pitcher plants of the genus Nepenthes. Ann Bot 100:527–536CrossRef PubMed PubMedCentral
    10.Moran JA, Clarke CM (2010) The carnivorous syndrome in Nepenthes pitcher plants. Current state of knowledge and potential future directions. Plant Signal Behav 5:644–648CrossRef PubMed PubMedCentral
    11.Gaume L, Perret P, Gorb E et al (2004) How do plant waxes cause flies to slide? Experimental tests of wax-based trapping mechanisms in three pitfall carnivorous plants. Arthropod Struct Dev 33:103–111. doi:10.​1016/​j.​asd.​2003.​11.​005 CrossRef PubMed
    12.Bonhomme V, Pelloux-Prayer H, Jousselin E et al (2011) Slippery or sticky? Functional diversity in the trapping strategy of Nepenthes carnivorous plants. New Phytol 191:545–554CrossRef PubMed
    13.Higashi S, Nakashima A, Ozaki H et al (1993) Analysis of feeding mechanism in a pitcher of Nepenthes hybrida. J Plant Res 106:47–54CrossRef
    14.An C-I, Fukusaki E, Kobayashi A (2001) Plasma-membrane H + -ATPases are expressed in pitchers of the carnivorous plant Nepenthes alata Blanco. Planta 212:547–555CrossRef PubMed
    15.An C-I, Fukusaki E, Kobayashi A (2002) Aspartic proteinases are expressed in pitchers of the carnivorous plant Nepenthes alata Blanco. Planta 214:661–667. doi:10.​1007/​s004250100665 CrossRef PubMed
    16.Bauer U, Willmes C, Federle W (2009) Effect of pitcher age on trapping efficiency and natural prey capture in carnivorous Nepenthes rafflesiana plants. Ann Bot 103:1219–1226. doi:10.​1093/​aob/​mcp065 CrossRef PubMed PubMedCentral
    17.Grafe TU, Schöner CR, Kerth G et al (2011) A novel resource-service mutualism between bats and pitcher plants. Biol Lett 7:436–439. doi:10.​1098/​rsbl.​2010.​1141 CrossRef PubMed PubMedCentral
    18.Schöner CR, Schöner MG, Kerth G, Grafe TU (2013) Supply determines demand: influence of partner quality and quantity on the interactions between bats and pitcher plants. Oecologia 173:191–202. doi:10.​1007/​s00442-013-2615-x CrossRef PubMed
    19.Clarke C, Moran JA, Lee CC (2011) Nepenthes baramensis (Nepenthaceae)—a new species from north-western Borneo. Blumea 56:229–233CrossRef
    20.Scharmann M, Grafe TU (2013) Reinstatement of Nepenthes hemsleyana (Nepenthaceae), an endemic pitcher plant from Borneo, with a discussion of associated Nepenthes taxa. Blumea 58:8–12. doi:10.​3767/​000651913X668465​ CrossRef
    21.Gaume L, Di Giusto B (2009) Adaptive significance and ontogenetic variability of the waxy zone in Nepenthes rafflesiana. Ann Bot 104:1281–91. doi:10.​1093/​aob/​mcp238 CrossRef PubMed PubMedCentral
    22.Bauer U, Grafe TU, Federle W (2011) Evidence for alternative trapping strategies in two forms of the pitcher plant, Nepenthes rafflesiana. J Exp Bot 62:3683–3692. doi:10.​1093/​jxb/​err082 CrossRef PubMed PubMedCentral
    23.Lim YS, Schöner CR, Schöner MG et al (2015) How a pitcher plant facilitates roosting of mutualistic woolly bats. Evol Ecol Res 16:1–11
    24.Schöner MG, Schöner CR, Simon R et al (2015) Bats are acoustically attracted to mutualistic carnivorous plants. Curr Biol 25:1911–1916. doi:10.​1016/​j.​cub.​2015.​05.​054 CrossRef PubMed
    25.Mithöfer A (2011) Carnivorous pitcher plants: insights in an old topic. Phytochemistry 72:1678–1682. doi:10.​1016/​j.​phytochem.​2010.​11.​024 CrossRef PubMed
    26.Takeuchi Y, Salcher MM, Ushio M et al (2011) In situ enzyme activity in the dissolved and particulate fraction of the fluid from four pitcher plant species of the genus Nepenthes. PLoS One 6:e25144. doi:10.​1371/​journal.​pone.​0025144 CrossRef PubMed PubMedCentral
    27.Amagase S, Mori M, Nakayama S (1972) Digestive enzymes in insectivorous plants. IV Enzymatic digestion of insects by Nepenthes secretion and drosera peltata extract: proteolytic and chitinolytic activities. J Biochem 72:765–767PubMed
    28.Mayer E, Adlassnig W, Peroutka M, Lichtscheidl IK (2005) Microflora in the traps of pitcher plants. In: VXII Int. Bot. Congr. p 510
    29.Buch F, Rott M, Rottloff S et al (2013) Secreted pitfall-trap fluid of carnivorous Nepenthes plants is unsuitable for microbial growth. Ann Bot 111:375–383. doi:10.​1093/​aob/​mcs287 CrossRef PubMed PubMedCentral
    30.Eilenberg H, Pnini-Cohen S, Schuster S et al (2006) Isolation and characterization of chitinase genes from pitchers of the carnivorous plant Nepenthes khasiana. J Exp Bot 57:2775–2784. doi:10.​1093/​jxb/​erl048 CrossRef PubMed
    31.Hatano N, Hamada T (2008) Proteome analysis of pitcher fluid of the carnivorous plant Nepenthes alata. J Proteome Res 7:809–816. doi:10.​1021/​pr700566d CrossRef PubMed
    32.Hatano N, Hamada T (2012) Proteomic analysis of secreted protein induced by a component of prey in pitcher fluid of the carnivorous plant Nepenthes alata. J Proteomics 75:4844–4852. doi:10.​1016/​j.​jprot.​2012.​05.​048 CrossRef PubMed
    33.Rottloff S, Stieber R, Maischak H et al (2011) Functional characterization of a class III acid endochitinase from the traps of the carnivorous pitcher plant genus, Nepenthes. J Exp Bot 62:4639–4647. doi:10.​1093/​jxb/​err173 CrossRef PubMed PubMedCentral
    34.Sota T, Mogi M, Kato K (1998) Local and regional-scale food web structure in Nepenthes alata pitchers. Biotropica 30:82–91CrossRef
    35.Yogiara AS, Suhartono MT (2006) A complex bacterial community living in pitcher plant fluid. J Mikrobiol Indones 11:9–14
    36.Morohoshi T, Oikawa M, Sato S et al (2011) Isolation and characterization of novel lipases from a metagenomic library of the microbial community in the pitcher fluid of the carnivorous plant Nepenthes hybrida. J Biosci Bioeng 112:315–20. doi:10.​1016/​j.​jbiosc.​2011.​06.​010 CrossRef PubMed
    37.Lüttge U (1964) Untersuchungen zur Physiologie der Carnivoren-Drüsen. Planta 63:103–117CrossRef
    38.Chou LY, Clarke CM, Dykes GA (2014) Bacterial communities associated with the pitcher fluids of three Nepenthes (Nepenthaceae) pitcher plant species growing in the wild. Arch Microbiol 196:709–717. doi:10.​1007/​s00203-014-1011-1 CrossRef PubMed
    39.Siragusa AJ, Swenson JE, Casamatta DA (2007) Culturable bacteria present in the fluid of the hooded-pitcher plant Sarracenia minor based on 16S rDNA gene sequence data. Microb Ecol 54:324–31. doi:10.​1007/​s00248-006-9205-y CrossRef PubMed
    40.Peterson CN, Day S, Wolfe BE et al (2008) A keystone predator controls bacterial diversity in the pitcher-plant (Sarracenia purpurea) microecosystem. Environ Microbiol 10:2257–66. doi:10.​1111/​j.​1462-2920.​2008.​01648.​x CrossRef PubMed
    41.Koopman MM, Fuselier DM, Hird S, Carstens BC (2010) The carnivorous pale pitcher plant harbors diverse, distinct, and time-dependent bacterial communities. Appl Environ Microbiol 76:1851–1860. doi:10.​1128/​AEM.​02440-09 CrossRef PubMed PubMedCentral
    42.Mouquet N, Daufresne T, Gray SM, Miller TE (2008) Modelling the relationship between a pitcher plant (Sarracenia purpurea) and its phytotelma community: mutualism or parasitism? Funct Ecol 22:728–737. doi:10.​1111/​j.​1365-2435.​2008.​01421.​x CrossRef
    43.Kozich JJ, Westcott SL, Baxter NT et al (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120. doi:10.​1128/​AEM.​01043-13 CrossRef PubMed PubMedCentral
    44.Caporaso JG, Lauber CL, Walters WA et al (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci 108:4516–4522. doi:10.​1073/​pnas.​1000080107/​-/​DCSupplemental.​www.​pnas.​org/​cgi/​doi/​10.​1073/​pnas.​1000080107 CrossRef PubMed PubMedCentral
    45.Fierer N, Hamady M, Lauber CL, Knight R (2008) The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci 105:17994–17999CrossRef PubMed PubMedCentral
    46.llumina Inc. (2013) Preparing libraries for sequencing on the MiSeq
    47.Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high- throughput community sequencing data. Nat Methods 7:335–336. doi:10.​1038/​nmeth0510-335 CrossRef PubMed PubMedCentral
    48.Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461CrossRef PubMed
    49.Edgar RC, Haas BJ, Clemente JC et al (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200CrossRef PubMed PubMedCentral
    50.R Core Team (2014) R: a language and environment for statistical computing
    51.McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. doi:10.​1371/​journal.​pone.​0061217 CrossRef PubMed PubMedCentral
    52.Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930CrossRef
    53.Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana
    54.Hill MO, Gauch HG Jr (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58CrossRef
    55.Lozupone CA, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235CrossRef PubMed PubMedCentral
    56.Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143CrossRef
    57.Bray JR, Curtis T (1957) An ordination of upland forest communities of Southern Wisconsin. Ecol Monogr 27:325–349CrossRef
    58.Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586CrossRef
    59.Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25. doi:10.​1023/​B:​ANTO.​0000024903.​10757.​6e CrossRef PubMed
    60.Rowe OF, Sánchez-España J, Hallberg KB, Johnson DB (2007) Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Environ Microbiol 9:1761–1771. doi:10.​1111/​j.​1462-2920.​2007.​01294.​x CrossRef PubMed
    61.Kersters K, Lisdiyanti P, Komagata K, Swings J (2006) The family Acetobacteraceae: the genera Acetobacter, Acidimonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia. In: Dworkin M, Falkow S, Rosenberg E, et al. (eds) Prokaryotes Vol. 5 Proteobacteria Alpha Beta Subclasses, Third Edit. Springer, pp 163–200
    62.Belova SE, Pankratov TA, Detkova EN et al (2009) Acidisoma tundrae gen. nov., sp. nov. and Acidisoma sibiricum sp. nov., two acidophilic, psychrotolerant members of the Alphaproteobacteria from acidic northern wetlands. Int J Syst Evol Microbiol 59:2283–2290. doi:10.​1099/​ijs.​0.​009209-0 CrossRef PubMed
    63.Lee JE, Lee S, Sung J, Ko G (2011) Analysis of human and animal fecal microbiota for microbial source tracking. ISME J 5:362–365CrossRef PubMed PubMedCentral
    64.Ley RE, Hamady M, Lozupone CA et al (2008) Evolution of mammals and their gut microbes. Science 320(80-):1647–1651CrossRef PubMed PubMedCentral
    65.Endo A, Irisawa T, Futagawa-Endo Y et al (2013) Lactobacillus faecis sp. nov., isolated from animal faeces. Int J Syst Evol Microbiol 63:4502–4507CrossRef PubMed
    66.O’Shea EF, Gardiner GE, O’Connor PM et al (2009) Characterization of enterocin- and salivaricin-producing lactic acid bacteria from the mammalian gastrointestinal tract. FEMS Microbiol Lett 291:24–34CrossRef PubMed
    67.Sayers EW, Barrett T, Benson DA et al (2011) Database resources of the national centre for biotechnology information. Nucleic Acids Res 39:D38–D51CrossRef PubMed PubMedCentral
    68.Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.​1016/​S0022-2836(05)80360-2 CrossRef PubMed
    69.Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140CrossRef PubMed PubMedCentral
    70.McMurdie PJ, Holmes S (2014) Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol 10:e1003531. doi:10.​1371/​journal.​pcbi.​1003531 CrossRef PubMed PubMedCentral
    71.Bagley S (1985) Habitat association of Klebsiella species. Infect Control 6:52–58PubMed
    72.Redford AJ, Fierer N (2009) Bacterial succession on the leaf surface: a novel system for studying successional dynamics. Plant-Microbe Interact 58:189–198
    73.Takeuchi Y, Chaffron S, Salcher MM et al (2015) Bacterial diversity and composition in the fluid of pitcher plants of the genus Nepenthes. Syst Appl Microbiol 38:330–339. doi:10.​1016/​j.​syapm.​2015.​05.​006 CrossRef PubMed
    74.Raj G, Kurup R, Hussain AA, Baby S (2011) Distribution of naphthoquinones, plumbagin, droserone, and 5-O-methyl droserone in chitin-induced and uninduced Nepenthes khasiana: molecular events in prey capture. J Exp Bot 62:5429–5436. doi:10.​1093/​jxb/​err219 CrossRef PubMed
    75.Morotomi M, Yuki N, Kado Y et al (2002) Lactobacillus equi sp. nov., a predominant intestinal Lactobacillus species of the horse isolated from faeces of healthy horses. Int J Syst Evol Microbiol 52:211–214CrossRef PubMed
    76.Roos S, Karner F, Axelsson L, Jonsson H (2000) Lactobacillus mucosae sp. nov., a new species with in vitro mucus-binding activity isolated from pig intestine. Int J Syst Evol Microbiol 50:251–258CrossRef PubMed
    77.Walter J, Britton RA, Roos S (2011) Host-microbial symbiosis in the vertebrate gastrointestinal tract and the Lactobacillus reuteri paradigm. Proc Natl Acad Sci 108:4645–4652CrossRef PubMed PubMedCentral
    78.Howard ST, Byrd TF (2000) The rapidly growing mycobacteria: saprophytes and parasites. Microbes Infect 2:1845–1853CrossRef PubMed
    79.Oram DM, Avdalovic A, Holmes RK (2004) Analysis of genes that encode DtxR-like transcriptional regulators in pathogenic and saprophytic corynebacterial species. Infect Immunol 72:1885–1895CrossRef
    80.Abe S, Takayama KI, Kinoshita S (1967) Taxonomical studies on glutamic acid-producing bacteria. J Gen Appl Microbiol 13:279–301CrossRef
    81.Pitcher D, Soto A, Soriano F, Valero-Guillén P (1992) Classification of coryneform bacteria associated with human urinary tract infection (group D2) as Corynebacterium urealyticum sp. nov. Int J Syst Bacteriol 42:178–181CrossRef PubMed
    82.Yabuuchi E, Kaneko T, Yano I et al (1983) Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Evol Bacteriol 33:580–598CrossRef
    83.Anes E, Kühnel MP, Bos E et al (2003) Selected lipids activate phagosome actin assembly and maturation resulting in killing of pathogenic mycobacteria. Nat Cell Biol 5:793–802. doi:10.​1038/​ncb1036.​NATURE CrossRef PubMed
    84.Cosma CL, Sherman DR, Ramakrishnan L (2003) The secret lives of the pathogenic mycobacteria. Annu Rev Microbiol 57:641–676. doi:10.​1146/​annurev.​micro.​57.​030502.​091033 CrossRef PubMed
    85.Bazile V, Le Moguédec G, Marshall DJ, Gaume L (2015) Fluid physico-chemical properties influence capture and diet in Nepenthes pitcher plants. Ann Bot 115:705–716. doi:10.​1093/​aob/​mcu266 CrossRef PubMed PubMedCentral
    86.Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120CrossRef PubMed PubMedCentral
    87.Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci 103:626–631CrossRef PubMed PubMedCentral
    88.Kimoto KI, Aizawa T, Urai M et al (2010) Acidocella aluminiidurans sp. nov., an aluminium-tolerant bacterium isolated from Panicum repens grown in a highly acidic swamp in actual acid sulfate soil area of Vietnam. Int J Syst Evol Microbiol 60:764–768CrossRef PubMed
    89.Jones RM, Hedrich S, Johnson DB (2013) Acidocella aromatica sp. nov.: an acidophilic heterotrophic alphaproteobacterium with unusual phenotypic traits. Extremophiles 17:841–850CrossRef PubMed
    90.Bragina A, Maier S, Berg C et al (2012) Similar diversity of Alphaproteobacteria and nitrogenase gene amplicons on two related Sphagnum mosses. Front Microbiol 2:1–10CrossRef
    91.Dröge S, Rachel R, Radek R, König H (2008) Treponema isoptericolens sp. nov., a novel spirochaete from the hindgut of the termite Incisitermes tabogae. Int J Syst Evol Microbiol 58:1079–1083. doi:10.​1099/​ijs.​0.​64699-0 CrossRef PubMed
    92.Graber JR, Leadbetter JR, Breznak JA (2004) Description of Treponema azotonutricium sp. nov. and Treponema primitia sp. nov., the first spirochetes isolated from termite guts. Appl Environ Microbiol 70:1315–1320. doi:10.​1128/​AEM.​70.​3.​1315 CrossRef PubMed PubMedCentral
    93.Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorous and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339CrossRef
    94.Boiero L, Perrig D, Masciarelli O et al (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880CrossRef PubMed
    95.Prankevicius AB, Cameron DM (1991) Bacterial dinitrogen fixation in the leaf of the northern pitcher plant (Sarracenia purpurea). Can J Bot 69:2296–2298. doi:10.​1139/​b91-289 CrossRef
    96.Bermudes D, Benzing DH (1991) Nitrogen fixation in association with Ecuadorean bromeliads. J Trop Ecol 7:531–536CrossRef
    97.Bhore SJ, Komathi V, Kandasamy KI (2013) Diversity of endophytic bacteria in medicinally important Nepenthes species. J Nat Sci Biol Med 4:431–434CrossRef PubMed PubMedCentral
    98.Videira SS, de Araujo JLS, da Silva RL et al (2009) Occurrence and diversity of nitrogen-fixing Sphingomonas bacteria associated with rice plants grown in Brazil. FEMS Microbiol Lett 293:11–19. doi:10.​1111/​j.​1574-6968.​2008.​01475.​x CrossRef PubMed
    99.Chen B, Shen J, Zhang X et al (2014) The endophytic bacterium, Sphingomonas SaMR12, improves the potential for zinc phytoremediation by its host, Sedum alfredii. PLoS One 9:e106826. doi:10.​1371/​journal.​pone.​0106826 CrossRef PubMed PubMedCentral
    100.Blatrix R, Djiéto-Lordon C, Mondolot L et al (2012) Plant-ants use symbiotic fungi as a food source: new insight into the nutritional ecology of ant-plant interactions. Proc R Soc B 279:3940–3947. doi:10.​1098/​rspb.​2012.​1403 CrossRef PubMed PubMedCentral
  • 作者单位:Wiebke Sickel (1)
    T. Ulmar Grafe (2)
    Ivonne Meuche (2)
    Ingolf Steffan-Dewenter (1)
    Alexander Keller (1)

    1. Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
    2. Faculty of Science, University Brunei Darussalam, Tungku Link, Gadong, BE, 1410, Brunei
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Microbiology
    Ecology
    Geoecology and Natural Processes
    Nature Conservation
  • 出版者:Springer New York
  • ISSN:1432-184X
文摘
Carnivorous plants of the genus Nepenthes have been studied for over a century, but surprisingly little is known about associations with microorganisms. The two species Nepenthes rafflesiana and Nepenthes hemsleyana differ in their pitcher-mediated nutrient sources, sequestering nitrogen from arthropod prey and arthropods as well as bat faeces, respectively. We expected bacterial communities living in the pitchers to resemble this diet difference. Samples were taken from different parts of the pitchers (leaf, peristome, inside, outside, digestive fluid) of both species. Bacterial communities were determined using culture-independent high-throughput amplicon sequencing. Bacterial richness and community structure were similar in leaves, peristomes, inside and outside walls of both plant species. Regarding digestive fluids, bacterial richness was higher in N. hemsleyana than in N. rafflesiana. Additionally, digestive fluid communities were highly variable in structure, with strain-specific differences in community composition between replicates. Acidophilic taxa were mostly of low abundance, except the genus Acidocella, which strikingly reached extremely high levels in two N. rafflesiana fluids. In N. hemsleyana fluid, some taxa classified as vertebrate gut symbionts as well as saprophytes were enriched compared to N. rafflesiana, with saprophytes constituting potential competitors for nutrients. The high variation in community structure might be caused by a number of biotic and abiotic factors. Nitrogen-fixing bacteria were present in both study species, which might provide essential nutrients to the plant at times of low prey capture and/or rare encounters with bats.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700