Oxidative Stress Biomarkers in Some Rat Brain Structures and Peripheral Organs Underwent Cocaine
详细信息    查看全文
  • 作者:Lucyna Pomierny-Chamio?o (1)
    Andrzej Moniczewski (1)
    Karolina Wydra (2)
    Agata Suder (2)
    Ma?gorzata Filip (1) (2)
  • 关键词:Rat ; Oxidative stress ; Cocaine self ; administration ; Superoxide dismutase ; Malondialdehyde
  • 刊名:Neurotoxicity Research
  • 出版年:2013
  • 出版时间:January 2013
  • 年:2013
  • 卷:23
  • 期:1
  • 页码:92-102
  • 全文大小:559KB
  • 参考文献:1. Bashkatova V, Meunier J, Vanin A, Maurice T (2006) Nitric oxide and oxidative stress in the brain of rats exposed in utero to cocaine. Ann NY Acad Sci 1074:632-42 CrossRef
    2. Bemanian S, Motallebi M, Nosrati SM (2005) Cocaine-induced renal infraction: report of a case and review of the literature. BMC Nephrol 6:10 CrossRef
    3. Ben-Shachar D, Zuk R, Glinka Y (1995) Dopamine neurotoxicity: inhibition of mitochondrial respiration. J Neurochem 64:718-23 CrossRef
    4. Berger AJ, Dieudonné S, Ascher P (1998) Glycine uptake governs glycine site occupancy at NMDA receptors of excitatory synapses. J Neurophysiol 80:3336-340
    5. Bergeron R, Meyer TM, Coyle JT, Greene RW (1998) Modulation of N-methyl-d -aspartate receptor function by glycine transport. Proc Natl Acad Sci USA 95:15730-5734 CrossRef
    6. Berke JD, Eichenbaum HB (2001) Drug addiction and the hippocampus. Science 294:1235 CrossRef
    7. Boelsteri UA, Goldlin C (1991) Biomechanisms of cocaine induced hepatic injury mediated by the formation of reactive metabolites. Arch Toxicol 65:351-60 CrossRef
    8. Boess F, Ndikum-Moffor F, Boelsterli UA, Roberts SM (2000) Effects of cocaine and its oxidative metabolites on mitochondrial respiration and generation of reactive oxygen species. Biochem Pharmacol 60:615-23 CrossRef
    9. Bouis D, Boelsterli UA (1990) Modulation of cocaine metabolism in primary rat hepatocyte cultures. Effect of irreversible binding and protein biosynthesis. Toxicol Appl Pharmacol 104:429-39 CrossRef
    10. Cherubini A, Ruggiero C, Polidori MC, Mecocci P (2005) Potential markers of oxidative stress in stroke. Free Radic Biol Med 39:841-52 CrossRef
    11. Crespo JA, Oliva JM, Ghasemzadeh MB, Kalivas PW, Ambrosio E (2002) Neuroadaptive changes in NMDAR1 gene expression after extinction of cocaine self-administration. Ann NY Acad Sci 965:78-1 CrossRef
    12. Devi BG, Chan AW (1996) Cocaine-induced peroxidative stress in rat liver: antioxidant enzymes and mitochondria. J Pharmacol Exp Ther 279:359-66
    13. Devi BG, Chan AW (1999) Effect of cocaine on cardiac biochemical functions. J Cardiovasc Pharmacol 33:1- CrossRef
    14. Dietrich JB, Mangeol A, Revel MO, Burgun C, Aunis D, Zwiller J (2005) Acute or repeated cocaine administration generates reactive oxygen species and induces antioxidant enzyme activity in dopaminergic rat brain structures. Neuropharmacology 48:965-74 CrossRef
    15. Diez-Fernandez C, Zaragoza A, Alverez AM, Cascales M (1999) Cocaine cytotoxicity in hepatocyte cultures from phenobarbital-induced rats: involvement of reactive oxygen species and expression of antioxidant defense systems. Biochem Pharmacol 58:797-05 CrossRef
    16. Dubroqua S, Singer P, Boison D, Feldon J, M?hler H, Yee BK (2010) Impacts of forebrain neuronal glycine transporter 1 disruption in the senescent brain: evidence for age-dependent phenotypes in Pavlovian learning. Behav Neurosci 124:839-50 CrossRef
    17. Edmondson DA, Towne JB, Foley DW, Abu-Hajir M, Kochar MS (2004) Cocaine-induced renal artery dissection and thrombosis leading to renal infraction. WMJ 103:66-9
    18. Fan L, Sawbridge D, George V, Teng L, Bailey A, Kitchen I, Li JM (2009) Chronic cocaine-induced cardiac oxidative stress and mitogen-activated protein kinase activation: the role of Nox2 oxidase. J Pharmacol Exp Ther 328:99-06 CrossRef
    19. Fija? K, Pachuta A, McCreary AC, Wydra K, Nowak E, Papp M, Bieńkowski P, Kotlińska J, Filip M (2010) Effects of serotonin (5-HT)6 receptor ligands on responding for cocaine reward and seeking in rats. Pharmacol Rep 62:1005-014
    20. Filip M, Go?da A, Zaniewska M, McCreary AC, Nowak E, Kolasiewicz W, Przegaliński E (2006) Involvement of cannabinoid CB1 receptors in drug addiction: effects of rimonabant on behavioral responses induced by cocaine. Pharmacol Rep 58:806-19
    21. Fineschi V, Baroldi G, Centini F, Cerretani D, Fiaschi AI, Micheli L, Parolini M, Turillazzi E, Giorgi G (2001) Markers of cardiac oxidative stress and altered morphology after intraperitoneal cocaine injection in a rat model. Int J Legal Med 114:323-30 CrossRef
    22. Fridovich I (1989) Superoxide dismutases. An adaptation to a paramagnetic gas. J Biol Chem 264:7761-764
    23. Halliwell B, Gutteridge JM (1997) Lipid peroxidation in brain homogenates: the role of iron and hydroxyl radicals. J Neurochem 69:1330-331 CrossRef
    24. Hemby SE, Horman B, Tang W (2005) Differential regulation of ionotropic glutamate receptor subunits following cocaine self-administration. Brain Res 1064:75-2 CrossRef
    25. Hermida-Ameijeiras A, Mendez-Alvarez E, Sanchez-Iglesias S, Sanmartin-Suarez C, Soto-Otero R (2004) Autoxidation and MAO-mediated metabolism of dopamine as a potential cause of oxidative stress: role of ferrous and ferric ions. Neurochem Int 45:103-16 CrossRef
    26. Kalivas PW (2009) The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 10:561-72 CrossRef
    27. Koe BK (1976) Molecular geometry of inhibitors of the uptake of catecholamines and serotonin in synaptosomal preparations of rat brain. J Pharmacol Exp Ther 199:649-61
    28. Kovacic P (2005) Role of oxidative metabolites of cocaine in toxicity and addiction: oxidative stress and electron transfer. Med Hypotheses 64:350-56 CrossRef
    29. Kovacic P, Sacman A, Wu-Weis M (2002) Nephrotoxins: widespreas role of oxidative stress and electron transfer. Curr Med Chem 9:823-47 CrossRef
    30. Kramer RK, Turner RC (1993) Renal infraction associated with cocaine use and latent protein c deficiency. South Med J 86:1436-438 CrossRef
    31. Lieb K, Andrae J, Reisert I, Pilgrim C (1995) Neurotoxicity of dopamine and protective effects of the NMDA receptor antagonist AP-5 differ between male and female dopaminergic neurons. Exp Neurol 134:222-29 CrossRef
    32. Lipton JW, Gyawali S, Borys ED, Koprich JB, Ptaszny M, McGuire SO (2003) Prenatal cocaine administration increases glutathione and alpha-tocopherol oxidation in fetal rat brain. Dev Brain Res 147:77-4 CrossRef
    33. Lowry OH, Rosebrough NJ, Farr AL, Randal RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265-75
    34. Macedo DS, deVasconcelos SM, dosSantos RS, Aguiar LM, Lima VT, Viana GS, deSousa FC (2005) Cocaine alters catalase activity in prefrontal cortex and striatum of mice. Neurosci Lett 387:53-6 CrossRef
    35. Macedo DS, deVasconcelos SM, Andrate-Neto M, Belchior LD, Honorino JER, Goncalves DO, Fonteles MMF, Silva MIG, Aguiar LMV, Viana GSB, Florenco de Sousa FC (2010) Cocaine-induced status epilepticus and death generate oxidative stress in prefrontal cortex and striatum of mice. Neurochem Int 56:183-87 CrossRef
    36. Maciel EN, Vercesi AE, Castilho RF (2001) Oxidative stress in Ca2+ -induced membrane permeability transition in brain mitochondria. J Neurochem 79:1237-245 CrossRef
    37. McClelland JL, McNaughton BL, O’Reilly RC (1995) Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev 102:419-57 CrossRef
    38. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170-175
    39. Moritz F, Monteil Ch, Isabelle M, Bauer F, Renet S, Mulder P, Richard V, Thuillez Ch (2003a) Role of reactive oxygen species in cocaine-induced cardiac dysfunction. Cardiovasc Res 59:834-43 CrossRef
    40. Moritz F, Monteil Ch, Mulder P, Derumeaux G, Bizet C, Renet S, Lallemand F, Richard V, Thuillez Ch (2003b) Prolonged cardiac dysfunction after withdrawal of chronic cocaine exposure in rats. J Cardiovasc Pharmacol 42:642-47 CrossRef
    41. Muriach M, Lopez-Pedrajas R, Barcia JM, Sanchez-Villarejo MV, Almansa I, Romero FJ (2010) Cocaine causes memory and learning impairments in rats: involvement of nuclear factor kappa B and oxidative stress, and prevention by topiramate. J Neurochem 114:675-84 CrossRef
    42. Nic Dhonnchadha BA, Pinard E, Alberati D, Wettstein JG, Spealman RD, Kantak KM (2012) Inhibiting glycine transporter-1 facilitates cocaine-cue extinction and attenuates reacquisition of cocaine-seeking behavior. Drug Alcohol Depend 122:119-26
    43. Nestler EJ (2004) Historical review: molecular and cellular mechanisms of opiate and cocaine addiction. Trends Pharmacol Sci 25:210-18 CrossRef
    44. Numa R, Kohen R, Poltyrev T, Yaka R (2008) Tempol diminishes cocaine-induced oxidative damage and attenuates the development and expression of behavioral sensitization. Neuroscience 155:649-58 CrossRef
    45. Pacifici R, Fiaschi AI, Micheli L, Centini F, Giorgi G, Zuccaro P, Pichini S, Di Carlo S, Bacosi A, Cerretani D (2003) Immunosuppression and oxidative stress induced by acute and chronic exposure to cocaine in rat. Int Immunopharmacol 3:581-92 CrossRef
    46. Poon HF, Abdullah L, Mullan MA, Mullan MJ, Crawford FC (2007) Cocaine-induced oxidative stress precedes cell death in human neuronal progenitor cells. Neurochem Int 50:69-3 CrossRef
    47. Portugal-Cohen M, Numa R, Yaka R, Kohen R (2010) Cocaine induces oxidative damage to skin via xanthine oxidase and nitric oxide synthase. J Dermatol Sci 58:105-12 CrossRef
    48. Rego AC, Oliveira CR (2003) Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem Res 28:1563-574 CrossRef
    49. Ritz MC, Lamb RJ, Goldberg SR, Kuhar MJ (1987) Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 237:1219-223 CrossRef
    50. Saleem TM, Singh M, Murtaza M, Singh A, Kasubhai M, Gnanasekaran I (2001) Renal infraction: a rare complication of cocaine abuse. Am J Emerg Med 19:528-29 CrossRef
    51. Smythies J (1997) The biochemical basis of synaptic plasticity and neurocomputation: a new theory. Proc Biol Sci 264:575-79 CrossRef
    52. Spickett CM, Wiswedel I, Siems W, Zarkovic K, Zarkovic N (2010) Advances in methods for determination of biologically relevant lipid peroxidation products. Free Radic Res 44:1172-202 CrossRef
    53. Stokes AH, Hastings TG, Vrana KE (1999) Cytotoxic and genotoxic potential of dopamine. J Neurosci Res 55:659-65 CrossRef
    54. Suto N, Ecke LE, You ZB (2010) Extracellular fluctuations of dopamine and glutamate in the nucleus accumbens core and shell associated with lever-pressing during cocaine self-administration, extinction, and yoked cocaine administration. Psychopharmacology 211:267-75 CrossRef
    55. Uys JD, Knackstedt L, Hurt P, Tew KD, Manevich Y, Hutchens S, Townsend DM, Kalivas PW (2011) Cocaine-induced adaptations in cellular redox balance contributes to enduring behavioral plasticity. Neuropsychopharmacology 36:2551-560 CrossRef
    56. Viggiano A, Seru R, Damiano S, De Luca B, Santillo M, Mondola P (2011) Inhibition of long term potentiation by CuZn superoxide dismutase injection in rat dentate gyrus: involvement of muscarinic M1 receptor. J Cell Physiol. doi:10.1002/jcp.23062
    57. Vongpatanasin W, Mansour Y, Chavoshan B, Arbique D, Victor RG (1999) Cocaine stimulates the human cardiovascular system via a central mechanism of action. Circulation 100:497-02 CrossRef
    58. Wydra K, Zaniewska M, Suder A, Dziubina A, Kowalska K, Golembiowska K, Fuxe K, Filip M (2011) In vivo microdialysis studies of brain dopamine, glutamate and GABA overflow during cocaine self-administration and its extinction. Eur Neuropsychopharmacol Suppl 1:S52 CrossRef
  • 作者单位:Lucyna Pomierny-Chamio?o (1)
    Andrzej Moniczewski (1)
    Karolina Wydra (2)
    Agata Suder (2)
    Ma?gorzata Filip (1) (2)

    1. Department of Toxicology, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
    2. Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Sm?tna 12, 31-343, Kraków, Poland
  • ISSN:1476-3524
文摘
Oxidative stress (OS) generates or intensifies cocaine-evoked toxicity in the brain and peripheral organs. The aim of this study was to examine superoxide dismutase (SOD) activity and lipid peroxidation [measured by malondialdehyde (MDA) levels] in rats during maintenance of cocaine self-administration and after withdrawal by a yoked-triad procedure. Our results indicate that repeated cocaine self-administration provoked an elevation of SOD activity in the hippocampus, frontal cortex, dorsal striatum, and liver. MDA levels were reduced in the brain, increased in the liver, kidney, and heart during maintenance of self-administration, and increased in the kidney in cocaine-yoked rats. In addition, following extinction training, we found enhanced MDA levels and SOD activity in the rat hippocampus, while changes in the activity of OS biomarkers in other brain structures and peripheral tissues were reminiscent of the changes seen during cocaine self-administration. These findings highlight the association between OS biomarkers in motivational processes related to voluntary cocaine intake in rats. OS participates in memory and learning impairments that could be involved in drug toxicity and addiction mechanisms. Therefore, further studies are necessary to address protective mechanisms against cocaine-induced brain and peripheral tissue damage.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700