Ultrasonic cavitation assisted hydrogen implosion synthesis of Pt nanoparticles/nitrogen-doped graphene nanohybrid scrolls and their electrocatalytic oxidation of methanol
详细信息    查看全文
  • 作者:Yunsong Zhang (1) (2)
    Xiaohua Zhang (1)
    Jinhua Chen (1)

    1. State Key Laboratory of Chemo/Biosensing and Chemometrics
    ; College of Chemistry and Chemical Engineering ; Hunan University ; 410082 ; Changsha ; People鈥檚 Republic of China
    2. College of Basic Science
    ; Sichuan Agricultural University ; 625014 ; Yaan ; People鈥檚 Republic of China
  • 关键词:Graphene nanoscrolls ; Electrocatalyst ; Nanohybrids ; Electrooxidation ; Methanol
  • 刊名:Ionics
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:21
  • 期:5
  • 页码:1287-1294
  • 全文大小:984 KB
  • 参考文献:1. Wang, S, Zhang, L, Xia, Z, Roy, A, Chang, DW, Baek, JB, Dai, L (2012) BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew Chem Int Ed 51: pp. 4209-4212 CrossRef
    2. Li, Y, Zhou, W, Wang, H, Xie, L, Liang, Y, Wei, F, Idrobo, J-C, Pennycook, SJ, Dai, H (2012) An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat Nanotechnol 7: pp. 394-400 CrossRef
    3. Dai, L (2012) Functionalization of graphene for efficient energy conversion and storage. Acc Chem Res 46: pp. 31-42 CrossRef
    4. Li, D, Muller, MB, Gilje, S, Kaner, RB, Wallace, GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3: pp. 101-105 CrossRef
    5. Geim, AK, Novoselov, KS (2007) The rise of graphene. Nat Mater 6: pp. 183-191 CrossRef
    6. Li, LH, Zhang, JN, Liu, YQ, Zhang, WM, Yang, HX, Chen, J, Xu, Q (2013) Facile fabrication of Pt nanoparticles on 1-pyrenamine functionalized graphene nanosheets for methanol electrooxidation. Acs Sustain Chem Eng 1: pp. 527-533 CrossRef
    7. Li, YM, Tang, LH, Li, JH (2009) Preparation and electrochemical performance for methanol oxidation of Pt/graphene nanocomposites. Electrochem Commun 11: pp. 846-849 CrossRef
    8. Xin, YC, Liu, JG, Zhou, Y, Liu, WM, Gao, JA, Xie, Y, Yin, Y, Zou, ZG (2011) Preparation and characterization of Pt supported on graphene with enhanced electrocatalytic activity in fuel cell. J Power Sources 196: pp. 1012-1018 CrossRef
    9. Guo, HL, Wang, XF, Qian, QY, Wang, FB, Xia, XH (2009) A green approach to the synthesis of graphene nanosheets. ACS Nano 3: pp. 2653-2659 CrossRef
    10. Zhou, YG, Chen, JJ, Wang, FB, Sheng, ZH, Xia, XH (2010) A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells. Chem Commun 46: pp. 5951-5953 CrossRef
    11. Dey, RS, Raj, CR (2010) Development of an amperometric cholesterol biosensor based on graphene鈭扨t nanoparticle hybrid material. J Phys Chem C 114: pp. 21427-21433 CrossRef
    12. Yin, H, Tang, H, Wang, D, Gao, Y, Tang, Z (2012) Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction. ACS Nano 6: pp. 8288-8297 CrossRef
    13. Shi, H, Shen, Y, He, F, Li, Y, Liu, A, Liu, S, Zhang, Y (2014) Recent advances of doped carbon as non-precious catalysts for oxygen reduction reaction. J Mater Chem A 2: pp. 15704-15716 CrossRef
    14. Vinayan, BP, Nagar, R, Rajalakshmi, N, Ramaprabhu, S (2012) Novel platinum鈥揷obalt alloy nanoparticles dispersed on nitrogen-doped graphene as a cathode electrocatalyst for PEMFC applications. Adv Funct Mater 22: pp. 3519-3526 CrossRef
    15. Wu, Z-S, Yang, S, Sun, Y, Parvez, K, Feng, X, M眉llen, K (2012) 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc 134: pp. 9082-9085 CrossRef
    16. Xiong, B, Zhou, Y, Zhao, Y, Wang, J, Chen, X, O鈥橦ayre, R, Shao, Z (2013) The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation. Carbon 52: pp. 181-192 CrossRef
    17. Li, JL, Peng, QS, Bai, GZ, Jiang, W (2005) Carbon scrolls produced by high energy ball milling of graphite. Carbon 43: pp. 2830-2833 CrossRef
    18. Viculis, LM, Mack, JJ, Kaner, RB (2003) A chemical route to carbon nanoscrolls. Science 299: pp. 1361 CrossRef
    19. Zeng, FY, Kuang, YF, Wang, Y, Huang, ZY, Fu, CP, Zhou, HH (2011) Facile preparation of high-quality graphene scrolls from graphite oxide by a microexplosion method. Adv Mater 23: pp. 4929-4932 CrossRef
    20. Journet, C, Maser, WK, Bernier, P, Loiseau, A, Chapelle, ML, Lefrant, S, Deniard, P, Lee, R, Fischer, JE (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388: pp. 756-758 CrossRef
    21. Schaper, AK, Wang, MS, Xu, Z, Bando, Y, Golberg, D (2011) Comparative studies on the electrical and mechanical behavior of catalytically grown multiwalled carbon nanotubes and scrolled graphene. Nano Lett 11: pp. 3295-3300 CrossRef
    22. Gao, Y, Chen, X, Xu, H, Zou, Y, Gu, R, Xu, M, Jen, AKY, Chen, H (2010) Highly-efficient fabrication of nanoscrolls from functionalized graphene oxide by Langmuir鈥揃lodgett method. Carbon 48: pp. 4475-4482 CrossRef
    23. Savoskin, MV, Mochalin, VN, Yaroshenko, AP, Lazareva, NI, Konstantinova, TE, Barsukov, IV, Prokofiev, IG (2007) Carbon nanoscrolls produced from acceptor-type graphite intercalation compounds. Carbon 45: pp. 2797-2800 CrossRef
    24. Zheng, J, Liu, H, Wu, B, Guo, Y, Wu, T, Yu, G, Liu, Y, Zhu, D (2011) Production of high-quality carbon nanoscrolls with microwave spark assistance in liquid nitrogen. Adv Mater 23: pp. 2460-2463 CrossRef
    25. Liu, Y, Xia, Y, Yang, H, Zhang, Y, Zhao, M, Pan, G (2013) Facile preparation of high-quality Pt/reduced graphene oxide nanoscrolls for methanol oxidation. Nanotechnology 24: pp. 235401 CrossRef
    26. Qiu, J-D, Wang, G-C, Liang, R-P, Xia, X-H, Yu, H-W (2011) Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells. J Phys Chem C 115: pp. 15639-15645 CrossRef
    27. Luo, B, Yan, X, Xu, S, Xue, Q (2012) Polyelectrolyte functionalization of graphene nanosheets as support for platinum nanoparticles and their applications to methanol oxidation. Electrochim Acta 59: pp. 429-434 CrossRef
    28. Kojima, Y, K-i, S, Fukumoto, K, Sasaki, M, Yamamoto, T, Kawai, Y, Hayashi, H (2002) Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide. Int J Hydrog Energy 27: pp. 1029-1034 CrossRef
    29. Bai, Y, Wu, C, Wu, F, Yi, B (2006) Carbon-supported platinum catalysts for on-site hydrogen generation from NaBH4 solution. Mater Lett 60: pp. 2236-2239 CrossRef
    30. Zhou, YK, Neyerlin, K, Olson, TS, Pylypenko, S, Bult, J, Dinh, HN, Gennett, T, Shao, ZP, O鈥橦ayre, R (2010) Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy Environ Sci 3: pp. 1437-1446 CrossRef
    31. Liang, Y, Wu, D, Feng, X, M眉llen, K (2009) Dispersion of graphene sheets in organic solvent supported by ionic interactions. Adv Mater 21: pp. 1679-1683 CrossRef
    32. Yang, S, Feng, X, Wang, L, Tang, K, Maier, J, M眉llen, K (2010) Graphene-based nanosheets with a sandwich structure. Angew Chem Int Ed 49: pp. 4795-4799 CrossRef
    33. Yang, S, Feng, X, M眉llen, K (2011) Sandwich-like, graphene-based Titania nanosheets with high surface area for fast lithium storage. Adv Mater 23: pp. 3575-3579 CrossRef
    34. He, D, Jiang, Y, Lv, H, Pan, M, Mu, S (2013) Nitrogen-doped reduced graphene oxide supports for noble metal catalysts with greatly enhanced activity and stability. Appl Catal B Environ 132鈥?33: pp. 379-388 CrossRef
    35. Sheng, ZH, Shao, L, Chen, JJ, Bao, WJ, Wang, FB, Xia, XH (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5: pp. 4350-4358 CrossRef
    36. Zhang, S, Shao, Y, Liao, H, Engelhard, MH, Yin, G, Lin, Y (2011) Polyelectrolyte-induced reduction of exfoliated graphite oxide: a facile route to synthesis of soluble graphene nanosheets. ACS Nano 5: pp. 1785-1791 CrossRef
    37. Zhuo, QQ, Gao, J, Peng, MF, Bai, LL, Deng, JJ, Xia, YJ, Ma, YY, Zhong, J, Sun, XH (2013) Large-scale synthesis of graphene by the reduction of graphene oxide at room temperature using metal nanoparticles as catalyst. Carbon 52: pp. 559-564 CrossRef
    38. Gao, W, Alemany, LB, Ci, LJ, Ajayan, PM (2009) New insights into the structure and reduction of graphite oxide. Nat Chem 1: pp. 403-408 CrossRef
    39. Huang, MH, Xu, X, Yang, H, Liu, SQ (2012) Electrochemically-driven and dynamic enhancement of drug metabolism via cytochrome P450 microsomes on colloidal gold/graphene nanocomposites. Rsc Adv 2: pp. 12844-12850 CrossRef
    40. Liu, KP, Zhang, JJ, Yang, GH, Wang, CM, Zhu, JJ (2010) Direct electrochemistry and electrocatalysis of hemoglobin based on poly(diallyldimethylammonium chloride) functionalized graphene sheets/room temperature ionic liquid composite film. Electrochem Commun 12: pp. 402-405 CrossRef
    41. Wang, S, Yu, D, Dai, L, Chang, DW, Baek, J-B (2011) Polyelectrolyte-functionalized graphene as metal-free electrocatalysts for oxygen reduction. ACS Nano 5: pp. 6202-6209 CrossRef
    42. Wu, BH, Hu, D, Kuang, YJ, Liu, B, Zhang, XH, Chen, JH (2009) Functionalization of carbon nanotubes by an ionic-liquid polymer: dispersion of Pt and PtRu nanoparticles on carbon nanotubes and their electrocatalytic oxidation of methanol. Angew Chem Int Ed 48: pp. 4751-4754 CrossRef
    43. Pozio, A, Francesco, M, Cemmi, A, Cardellini, F, Giorgi, L (2002) Comparison of high surface Pt/C catalysts by cyclic voltammetry. J Power Sources 105: pp. 13-19 CrossRef
    44. Pels, JR, Kapteijn, F, Moulijn, JA, Zhu, Q, Thomas, KM (1995) Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 33: pp. 1641-1653 CrossRef
    45. Qiu, Y, Zhang, X, Yang, S (2011) High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets. Phys Chem Chem Phys 13: pp. 12554-12558 CrossRef
    46. Qiu, Y, Yan, K, Yang, S, Jin, L, Deng, H, Li, W (2010) Synthesis of size-tunable anatase TiO2 nanospindles and their assembly into anatase@titanium oxynitride/titanium nitride鈭抔raphene nanocomposites for rechargeable lithium Ion batteries with high cycling performance. ACS Nano 4: pp. 6515-6526 CrossRef
    47. Hsin, YL, Hwang, KC, Yeh, C-T (2007) Poly(vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells. J Am Chem Soc 129: pp. 9999-10010 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Electrochemistry
    Materials Science
    Physical Chemistry
    Condensed Matter
    Renewable Energy Sources
    Electrical Power Generation and Transmission
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1862-0760
文摘
Based on the ultrasonic cavitation assisted hydrogen implosion method, Pt nanoparticles (NPs)/nitrogen-doped graphene nanohybrid scrolls (Pt NPs/N-GNSs) were synthesized. As the results of the N-doping and high reduction degree of graphene, and scroll structure of the nanohybrids, the Pt NPs/N-GNSs electrocatalyst shows excellent performance in the direct oxidation of methanol: low onset and peak potentials, high oxidation current, and good long-term cycle stability. The Pt NPs/N-GNSs should have great promising applications in heterogeneous catalysis and fuel cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700