Expression Analysis of Two P450 Monooxygenase Genes of the Tobacco Cutworm Moth (Spodoptera litura) at Different Developmental Stages and in Response to Plant Allelochemicals
详细信息    查看全文
  • 作者:Rui-Long Wang (1) (4)
    Jun Li (1) (4)
    Christian Staehelin (3)
    Xiao-Wei Xin (1) (4)
    Yi-Juan Su (1) (4)
    Ren-Sen Zeng (1) (2) (4)

    1. Key Laboratory of Tropical Agro-environment
    ; Ministry of Agriculture ; South China Agricultural University ; Guangzhou ; 510642 ; China
    4. Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions
    ; South China Agricultural University ; Guangzhou ; 510642 ; China
    3. State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources
    ; School of Life Sciences ; Sun Yat-sen University ; East Campus ; Guangzhou ; 510006 ; China
    2. College of Life Sciences
    ; Fujian Agriculture and Forestry University ; Fuzhou ; 350002 ; China
  • 关键词:Spodoptera litura ; Plant allelochemicals ; Cytochrome P450 monooxygenases ; CYP6B48 ; CYP6B58 ; Lepidoptera ; Noctuidae generalist insect pest
  • 刊名:Journal of Chemical Ecology
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:41
  • 期:1
  • 页码:111-119
  • 全文大小:784 KB
  • 参考文献:1. Ahmad M, Iqbal Arif M, Ahmad M (2007) Occurrence of insecticide resistance in field populations of / Spodoptera litura (Lepidoptera: Noctuidae) in Pakistan. Crop Prot 26:809鈥?17 CrossRef
    2. Ahmad M, Ghaffar A, Rafiq M (2013) Host plants of leaf worm, / Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) in Pakistan. Asian J Agric Biol 1:23鈥?8
    3. Bhaskara S, Dean ED, Lam V, Ganguly R (2006) Induction of two cytochrome P450 genes, Cyp6a2 and Cyp6a8, of / Drosophila melanogaster by caffeine in adult flies and in cell culture. Gene 377:56鈥?4 CrossRef
    4. Bhaskara S, Chandrasekharan MB, Ganguly R (2008) Caffeine induction of / Cyp6a2 and / Cyp6a8 genes of / Drosophila melanogaster is modulated by cAMP and D-JUN protein levels. Gene 415:49鈥?9 CrossRef
    5. Cano-Ram铆rez C, L贸pez MF, Cesar-Ayala AK, Pineda-Mart铆nez V, Sullivan BT, Z煤帽iga G (2013) Isolation and expression of cytochrome P450 genes in the antennae and gut of pine beetle / Dendroctonus rhizophagus (Curculionidae: / Scolytinae) following exposure to host monoterpenes. Gene 520:47鈥?3 CrossRef
    6. Chandor-Proust A, Bibby J, R茅gent-Kloeckner M, Roux J, Guittard-Crilat E, Poupardin R, Riaz MA, Paine M, Dauphin-Villemant C, Reynaud S, David J (2013) The central role of mosquito cytochrome P450 CYP6Zs in insecticide detoxification revealed by functional expression and structural modelling. Biochem J 455:75鈥?5 CrossRef
    7. Chung H, Sztal T, Pasricha S, Sridhar M, Batterham P, Daborn PJ (2009) Characterization of / Drosophila melanogaster cytochrome P450 genes. Proc Natl Acad Sci U S A 106:5731鈥?736 CrossRef
    8. Cich贸n LB, Sole帽o J, Anguiano OL, Garrido SA, Montagna CM (2013) Evaluation of cytochrome P450 activity in field populations of / Cydia pomonella (Lepidoptera: Tortricidae) resistant to azinphosmethyl, acetamiprid, and thiacloprid. J Econ Entomol 106:939鈥?44 CrossRef
    9. Feyereisen R (2006) Evolution of insect P450. Biochem Soc Trans 34:1252鈥?255 CrossRef
    10. Gotoh O (1992) Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J Biol Chem 267:83鈥?0
    11. Grubor VD, Heckel DG (2007) Evaluation of the role of CYP6B cytochrome P450s in pyrethroid resistant Australian / Helicoverpa armigera. Insect Mol Biol 16:15鈥?3 CrossRef
    12. Guo FG, Lei JX, Sun YC, Cui YH, Ge F, Patil BS, Koiwa H, Zeng RS, Zhu-Salzman K (2012) Antagonistic regulation, yet synergistic defense: effect of bergapten and protease inhibitor on development of cowpea bruchid / Callosobruchus maculatus. PLoS One 7(8):e41877. doi:10.1371/journal.pone.0041877 CrossRef
    13. Harrison TL, Zanger AR, Schule MA, Berenbaum MR (2001) Developmental variation in cytochrome P450 expression in / Papilio polyxenes in response to xanthotoxin, a hostplant allelochemical. Arch Insect Biochem Physiol 48:179鈥?89 CrossRef
    14. Hlavica P (2011) Insect cytochromes P450: topology of structural elements predicted to govern catalytic versatility. J Inorg Biochem 105:1354鈥?364 CrossRef
    15. Hung CF, Berenbaum MR, Schuler MA (1997) Isolation and characterization of CYP6B4, furanocoumarin-inducible cytochrome P450 from a polyphagous caterpillar (Lepidoptera: Papilionidae). Insect Biochem Mol 27:377鈥?85 CrossRef
    16. Ismail HM, O鈥橬eill PM, Hong DW, Finn RD, Henderson CJ, Wright AT, Cravatt BF, Hemingway J, Paine MJ (2013) Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions. Proc Natl Acad Sci U S A 110:19766鈥?9771 CrossRef
    17. Jensen HR, Scott IM, Sims S, Trudeau VL, Arnason JT (2006) Gene expression profiles of / Drosophila melanogaster exposed to an insecticidal extract of / Piper nigrum. J Agric Food Chem 54:1289鈥?295 CrossRef
    18. Li X, Berenbaum MR, Schuler MA (2002a) Plant allelochemicals differentially regulate / Helicoverpa zea cytochrome P450 genes. Insect Mol Biol 11:343鈥?51 CrossRef
    19. Li X, Schuler MA, Berenbaum MR (2002b) Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes. Nature 419:712鈥?15 CrossRef
    20. Li W, Zangerl AR, Schuler MA, Berenbaum MR (2004a) Characterization and evolution of furanocoumarin-inducible cytochrome P450s in the parsnip webworm, / Depressaria pastinacella. Insect Mol Biol 13:603鈥?13 CrossRef
    21. Li X, Berenbaum MR, Schuler MA (2004b) Structural and functional divergence of insect CYP6B proteins: from specialist to generalist cytochrome P450. Proc Natl Acad Sci U S A 101:2939鈥?944 CrossRef
    22. Li X, Schuler MA, Berenbaum MR (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52:231鈥?53 CrossRef
    23. Liu X, Zhang L, Zhang XT, Gao XW (2013) Molecular cloning and recombinant expression of cytochrome P450 CYP6B6 from / Helicoverpa armigera in / Escherichia coli. Mol Biol Rep 40:1211鈥?217 CrossRef
    24. Liu D, Zhou X, Li M, Zhu S, Qiu X (2014) Characterization of NADPH-cytochrome P450 reductase gene from the cotton bollworm, / Helicoverpa armigera. Gene 545:262鈥?70 CrossRef
    25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time tuantitative PCR and the 2-螖螖CT Method. Methods 25(4):402鈥?08 CrossRef
    26. Mao W, Schuler MA, Berenbaum MR (2007) Cytochrome P450s in / Papilio multicaudatus and the transition from oligophagy to polyphagy in the Papilionidae. Insect Biochem Mol Biol 16:481鈥?90 CrossRef
    27. McDonnell CM, Brown RP, Berenbaum MR, Schuler MA (2004) Conserved regulatory elements in the promoters of two allelochemical-inducible cytochrome P450 genes differentially regulate transcription. Insect Biochem Mol Biol 34:1129鈥?139 CrossRef
    28. Niu G, Rupasinghe SG, Zangerl AR, Siegel JP, Schuler MA, Berenbaum MR (2011) A substrate-specific cytochrome P450 monooxygenase, CYP6AB11, from the polyphagous navel orangeworm ( / Amyelois transitella). Insect Biochem Mol Biol 41:244鈥?53 CrossRef
    29. Qin HG, Wang DD, Ding J, Huang RH, Ye ZX (2006) Host plants of / Spodop teralitura. Acta Agric Jiangxi 18:51鈥?8
    30. Riga M, Tsakireli D, Ilias A, Morou E, Myridakis A, Stephanou EG, Nauen R, Dermauw W, van Leeuwen T, Paine M, Vontas J (2014) Abamectin is metabolized by CYP392A16, a cytochrome P450 associated with high levels of acaricide resistance in / Tetranychus urticae. Insect Biochem Mol Biol 46:43鈥?3 CrossRef
    31. Rupasinghe SG, Wen ZM, Chiu TL, Schuler MA (2007) / Helicoverpa zea CYP6B8 and CYP321A1: different molecular solutions to the problem of metabolizing plant toxins and insecticides. Protein Eng Des Sel 20:615鈥?24 CrossRef
    32. Schuler MA (2011) P450s in plant鈥搃nsect interactions. BBA-Protein Proteomics 1814:36鈥?5 CrossRef
    33. Schuler MA, Berenbaum MR (2013) Structure and function of cytochrome P450S in insect adaptation to natural and synthetic toxins: insights gained from molecular modeling. J Chem Ecol 39:1232鈥?245 CrossRef
    34. Scully ED, Hoover K, Carlson JE, Tien M, Geib SM (2013) Midgut transcriptome profiling of / Anoplophora glabripennis, a lignocellulose degrading cerambycid beetle. BMC Genomics 14:850 CrossRef
    35. Shad SA, Sayyed AH, Fazal S, Saleem MA, Zaka SM, Ali M (2012) Field evolved resistance to carbamates, organophosphates, pyrethroids, and new chemistry insecticides in Spodoptera litura Fab. (Lepidoptera: Noctuidae). J Pestic Sci 85:153鈥?62 CrossRef
    36. Wang B, Shahzad MF, Zhang Z, Sun H, Han P, Li F, Han Z (2014) Genome-wide analysis reveals the expansion of Cytochrome P450 genes associated with xenobiotic metabolism in rice striped stem borer, / Chilo suppressalis. Biochem Biophys Res Commun 443:756鈥?60 CrossRef
    37. Wen Z, Pan L, Berenbaum MR, Schuler MA (2003) Metabolism of linear and angular furanocoumarins by / Papilio polyxenes CYP6B1 co-expressed with NADPH cytochrome P450 reductase. Insect Biochem Mol Biol 33(9):937鈥?47 CrossRef
    38. Wen Z, Berenbaum MR, Schuler MA (2006) Inhibition of CYP6B1-mediated detoxification of xanthotoxin by plant allelochemicals in the black swallowtail ( / Papilio polyxenes). J Chem Ecol 2:507鈥?22 CrossRef
    39. Wen Z, Zeng RS, Niu G, Berenbaum MR, Schuler MA (2009) Ecological significance of induction of broad-substrate cytochrome P450s by natural and synthetic inducers in / Helicoverpa zea. J Chem Ecol 5:183鈥?89 CrossRef
    40. Willoughby L, Chung H, Lumb C, Robin C, Batterham P, Daborn PJ (2006) A comparison of / Drosophila melanogaster detoxification gene induction responses for six insecticides, caffeine and phenobarbital. Insect Biochem Mol Biol 36:934鈥?42 CrossRef
    41. Zeng RS, Wen Z, Niu G, Schuler MA, Berenbaum MR (2007) Allelochemical induction of cytochrome P450 monooxygenases and amelioration of xenobiotic toxicity in / Helicoverpa zea. J Chem Ecol 33:449鈥?61 CrossRef
    42. Zeng RS, Wen Z, Niu G, Berenbaum MR (2013) Aflatoxin B1: toxicity, bioactivation and detoxification in the polyphagous caterpillar / Trichoplusia ni. Insect Sci 20:318鈥?28 CrossRef
    43. Zhang C, Luo X, Ni X, Zhang Y, Li X (2010) Functional characterization of cis-acting elements mediating flavone-inducible expression of / CYP321A1. Insect Biochem Mol Biol 40:898鈥?08 CrossRef
    44. Zhang YE, Ma HJ, Feng DD, Lai XF, Chen ZM, Xu MY, Yu QY, Zhang Z (2012) Induction of detoxification enzymes by quercetin in the silkworm. J Econ Entomol 105:1034鈥?042 CrossRef
    45. Zhou XJ, Sheng CF, Li M, Wan H, Liu D, Qiu XH (2010) Expression responses of nine cytochrome P450 genes to xenobiotics in the cotton bollworm / Helicoverpa armigera. Pestic Biochem Physiol 97:209鈥?13 CrossRef
    46. Zhou JL, Shu YH, Zhang GR, Zhou Q (2012a) Lead exposure improves the tolerance of / Spodoptera litura (Lepidoptera: Noctuidae) to cypermethrin. Chemosphere 88:507鈥?13 CrossRef
    47. Zhou JL, Zhang GR, Zhou Q (2012b) Molecular characterization of cytochrome P450 / CYP6B47 cDNAs and 5鈥?flanking sequence from / Spodoptera litura (Lepidoptera: Noctuidae): Its response to lead stress. J Insect Physiol 58:726鈥?36 CrossRef
  • 刊物主题:Ecology; Biochemistry, general; Entomology; Biological Microscopy; Agriculture;
  • 出版者:Springer US
  • ISSN:1573-1561
文摘
Cytochrome P450 monooxygenases (P450s) of insects are known to be involved in the metabolism or detoxification of plant allelochemicals and insecticides. Spodoptera litura (Lepidoptera, Noctuidae) is a polyphagous moth responsible for severe yield losses in many crops. In this study, two full-length P450 genes, CYP6B48 and CYP6B58, were cloned from S. litura. The cDNA sequences encode proteins with 503 and 504 amino acids, respectively. Phylogenetic analysis revealed that CYP6B48 and CYP6B58 belong to the CYP6B subfamily of P450s. Quantitative real-time PCR analyses showed that CYP6B48 and CYP6B58 were expressed only at larval stage, but not at pupal and adult stages. The highest levels of transcripts were found in the midguts and fat bodies of the larvae. No expression was detected in the ovary or hemolymph. Feeding with diets containing cinnamic acid, quercetin, or coumarin did not affect expression of CYP6B48. In contrast, diet supplemented with xanthotoxin dramatically increased the levels of CYP6B48 transcript in the midgut and fat bodies. Larvae fed with flavone had high levels of transcript of CYP6B48 in the midgut, whereas only slightly elevated levels were found in the fat bodies. Effects of the tested allelochemicals on CYP6B58 expression were minor. Hence, our findings show that S. litura responds to specific allelochemicals such as xanthotoxin with the accumulation of CYP6B48 transcripts, suggesting that specific signals in the food control the insect鈥檚 ability to convert toxic allelochemicals to less harmful forms at the transcriptional level.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700