Genome sequencing of Sporisorium scitamineum provides insights into the pathogenic mechanisms of sugarcane smut
详细信息    查看全文
  • 作者:Youxiong Que (7)
    Liping Xu (7)
    Qibin Wu (7)
    Yongfeng Liu (8)
    Hui Ling (7)
    Yanhong Liu (8)
    Yuye Zhang (7)
    Jinlong Guo (7)
    Yachun Su (7)
    Jiebo Chen (9)
    Shanshan Wang (7)
    Chengguang Zhang (8)

    7. Key Laboratory of Sugarcane Biology and Genetic Breeding
    ; Ministry of Agriculture ; Fujian Agriculture and Forestry University ; Fuzhou ; 350002 ; China
    8. BGI-Shenzhen
    ; Main Building 11/F ; Beishan Industrial Zone ; Yantian District ; Shenzhen ; 518083 ; China
    9. College of Life Science
    ; Fujian Agriculture and Forestry University ; Fuzhou ; 350002 ; China
  • 关键词:Sporisorium scitamineum ; Sugarcane smut ; Pathogenic mechanisms ; G ; protein coupled receptors ; Carbohydrate degrading enzymes ; Biotrophic properties ; Candidates for secreted effector proteins ; Secondary metabolic pathways
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:3,774 KB
  • 参考文献:1. Mundkur, B (1939) Taxonomy of the sugar-cane smuts. Kew Bull 10: pp. 525-533
    2. Hoy, J, Hollier, C, Fontenot, D, Grelen, L (1986) Incidence of sugarcane smut in Louisiana and its effect on yield. Plant Dis 70: pp. 59-60 CrossRef
    3. V谩nky, K, Lutz, M (2011) Tubisorus, a new genus of smut fungi (Ustilaginomycetes) for Sporisorium pachycarpum. Mycol Balcanica 8: pp. 129-135
    4. Begerow, D, Stoll, M, Bauer, R (2006) A phylogenetic hypothesis of Ustilaginomycotina based on multiple gene analyses and morphological data. Mycologia 98: pp. 906-916 CrossRef
    5. McTaggart, A, Shivas, R, Geering, A, Callaghan, B, V谩nky, K, Scharaschkin, T (2012) Soral synapomorphies are significant for the systematics of the Ustilago-Sporisorium-Macalpinomyces complex (Ustilaginaceae). Persoonia 29: pp. 63-67 CrossRef
    6. K盲mper, J, Kahmann, R, B枚lker, M, Ma, L-J, Brefort, T, Saville, BJ, Banuett, F, Kronstad, JW, Gold, SE, M眉ller, O (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444: pp. 97-101 CrossRef
    7. Laurie, JD, Ali, S, Linning, R, Mannhaupt, G, Wong, P, G眉ldener, U, M眉nsterk枚tter, M, Moore, R, Kahmann, R, Bakkeren, G (2012) Genome comparison of barley and maize smut fungi reveals targeted loss of RNA silencing components and species-specific presence of transposable elements. Plant Cell 24: pp. 1733-1745 CrossRef
    8. Schirawski, J, Mannhaupt, G, M眉nch, K, Brefort, T, Schipper, K, Doehlemann, G, Di Stasio, M, R枚ssel, N, Mendoza-Mendoza, A, Pester, D (2010) Pathogenicity determinants in smut fungi revealed by genome comparison. Science 330: pp. 1546-1548 CrossRef
    9. Bakkeren, G, K盲mper, J, Schirawski, J (2008) Sex in smut fungi: structure, function and evolution of mating-type complexes. Fungal Genet Biol 45: pp. 15-21 CrossRef
    10. Blumenstiel, JP (2011) Evolutionary dynamics of transposable elements in a small RNA world. Trends Genet 27: pp. 23-31 CrossRef
    11. Soanes, DM, Richards, TA, Talbot, NJ (2007) Insights from sequencing fungal and oomycete genomes: what can we learn about plant disease and the evolution of pathogenicity?. Plant Cell 19: pp. 3318-3326 CrossRef
    12. Dean, RA, Talbot, NJ, Ebbole, DJ, Farman, ML, Mitchell, TK, Orbach, MJ, Thon, M, Kulkarni, R, Xu, JR, Pan, H (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434: pp. 980-986 CrossRef
    13. Cuomo, CA, G眉ldener, U, Xu, JR, Trail, F, Turgeon, BG, Di Pietro, A, Walton, JD, Ma, LJ, Baker, SE, Rep, M (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317: pp. 1400-1402 CrossRef
    14. Kulkarni, RD, Thon, MR, Pan, H, Dean, RA (2005) Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol 6: pp. R24 CrossRef
    15. Gruber, S, Omann, M, Zeilinger, S (2013) Comparative analysis of the repertoire of G protein-coupled receptors of three species of the fungal genus Trichoderma. BMC Microbiol 13: pp. 108 CrossRef
    16. Li, L, Wright, SJ, Krystofova, S, Park, G, Borkovich, KA (2007) Heterotrimeric G protein signaling in filamentous fungi. Annu Rev Microbiol 61: pp. 423-452 CrossRef
    17. Zhao, Z, Liu, H, Wang, C, Xu, JR (2013) Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics 14: pp. 274 CrossRef
    18. de Souza, AP, Leite, DC, Pattathil, S, Hahn, MG, Buckeridge, MS (2013) Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production. BioEnergy Res 6: pp. 564-579 CrossRef
    19. Raffaele, S, Kamoun, S (2012) Genome evolution in filamentous plant pathogens: why bigger can be better. Nat Rev Microbiol 10: pp. 417-430
    20. de Wit, PJ, Van Der Burgt, A, 脰kmen, B, Stergiopoulos, I, Abd-Elsalam, KA, Aerts, AL, Bahkali, AH, Beenen, HG, Chettri, P, Cox, MP (2012) The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry. PLoS Genet 8: pp. e1003088 CrossRef
    21. Krappmann, S, Braus, G (2005) Nitrogen metabolism of Aspergillus and its role in pathogenicity. Med Mycol 43: pp. 31-40 CrossRef
    22. Winnenburg, R, Urban, M, Beacham, A, Baldwin, TK, Holland, S, Lindeberg, M, Hansen, H, Rawlings, C, Hammond-Kosack, KE, K枚hler, J (2008) PHI-base update: additions to the pathogen鈥揾ost interaction database. Nucleic Acids Res 36: pp. 572-576
    23. Viaud, MC, Balhad猫re, PV, Talbot, NJ (2002) A Magnaporthe grisea cyclophilin acts as a virulence determinant during plant infection. Plant Cell 14: pp. 917-930 CrossRef
    24. Emanuelsson, O, Brunak, S, von Heijne, G, Nielsen, H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2: pp. 953-971 CrossRef
    25. Pedersen, C, van Themaat, EVL, McGuffin, LJ, Abbott, JC, Burgis, TA, Barton, G, Bindschedler, LV, Lu, X, Maekawa, T, We脽ling, R (2012) Structure and evolution of barley powdery mildew effector candidates. BMC Genomics 13: pp. 694 CrossRef
    26. Doehlemann, G, van der Linde, K, A脽mann, D, Schwammbach, D, Hof, A, Mohanty, A, Jackson, D, Kahmann, R (2009) Pep1, a secreted effector protein of Ustilago maydis, is qequired for successful invasion of plant cells. PLoS Pathog 5: pp. e1000290 CrossRef
    27. Hemetsberger, C, Herrberger, C, Zechmann, B, Hillmer, M, Doehlemann, G (2012) The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLoS Pathog 8: pp. e1002684 CrossRef
    28. Schirawski, J (2010) Elucidation of the complete ferrichrome A biosynthetic pathway in Ustilago maydis. Mol Microbiol 75: pp. 1260-1271 CrossRef
    29. Finking, R, Marahiel, MA (2004) Biosynthesis of nonribosomal peptides 1. Annu Rev Microbiol 58: pp. 453-488 CrossRef
    30. Oide, S, Moeder, W, Krasnoff, S, Gibson, D, Haas, H, Yoshioka, K, Turgeon, BG (2006) NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell 18: pp. 2836-2853 CrossRef
    31. Oide, S, Krasnoff, SB, Gibson, DM, Turgeon, BG (2007) Intracellular siderophores are essential for ascomycete sexual development in heterothallic Cochliobolus heterostrophus and homothallic Gibberella zeae. Eukaryot Cell 6: pp. 1339-1353 CrossRef
    32. Schrettl, M, Bignell, E, Kragl, C, Sabiha, Y, Loss, O, Eisendle, M, Wallner, A, Arst, HN, Haynes, K, Haas, H (2007) Distinct roles for intra-and extracellular siderophores during Aspergillus fumigatus infection. PLoS Pathog 3: pp. e128 CrossRef
    33. Matheussen, AM, Morgan, PW, Frederiksen, RA (1991) Implication of gibberellins in head smut (Sporisorium reilianum) of Sorghum bicolor. Plant Physiol 96: pp. 537-544 CrossRef
    34. Nelson, DR (1999) Cytochrome P450 and the individuality of species. Arch Biochem Biophys 369: pp. 1-10 CrossRef
    35. Islam, MS, Haque, MS, Islam, MM, Emdad, EM, Halim, A, Hossen, QMM, Hossain, MZ, Ahmed, B, Rahim, S, Rahman, MS (2012) Tools to kill: genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina. BMC Genomics 13: pp. 493 CrossRef
    36. Li, R, Zhu, H, Ruan, J, Qian, W, Fang, X, Shi, Z, Li, Y, Li, S, Shan, G, Kristiansen, K (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20: pp. 265-272 CrossRef
    37. Li, L, Stoeckert, CJ, Roos, DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13: pp. 2178-2189 CrossRef
    38. Edgar, RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: pp. 1792-1797 CrossRef
    39. Birney, E, Durbin, R (2000) Using GeneWise in the Drosophila annotation experiment. Genome Res 10: pp. 547-548 CrossRef
    40. Stanke, M, Keller, O, Gunduz, I, Hayes, A, Waack, S, Morgenstern, B (2006) AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res 34: pp. 435-439 CrossRef
    41. Saha, S, Bridges, S, Magbanua, ZV, Peterson, DG (2008) Empirical comparison of ab initio repeat finding programs. Nucleic Acids Res 36: pp. 2284-2294 CrossRef
    42. Medema, MH, Blin, K, Cimermancic, P, de Jager, V, Zakrzewski, P, Fischbach, MA, Weber, T, Takano, E, Breitling, R (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39: pp. 339-346 CrossRef
    43. Kall, L, Krogh, A, Sonnhammer, ELL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338: pp. 1027-1036 CrossRef
    44. Bruce, SA, Saville, BJ, Emery, RN (2011) Ustilago maydis produces cytokinins and abscisic acid for potential regulation of tumor formation in maize. J Plant Growth Regul 30: pp. 51-63 CrossRef
    45. Santiago, R, de Armas, R, Legaz, ME, Vicente, C (2008) Separation from Ustilago scitaminea of different elicitors which modify the pattern of phenolic accumulation in sugarcane leaves. J Plant Pathol 90: pp. 87-96
    46. Ahmad, M, Smith, E (1985) Utilization of carbon and nitrogen sources and acid/alkali production by cowpea rhizobia. Plant Soil 86: pp. 279-282 CrossRef
    47. Que, YX, Su, YC, Guo, JL, Wu, QB, Xu, LP (2014) A global view of transcriptome dynamics during Sporisorium scitamineum challenge in sugarcane by RNA-Seq. PLoS One 9: pp. e106476 CrossRef
    48. Livak, KJ, Schmittgen, TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2- 螖螖CT method. Methods 25: pp. 402-408 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Sugarcane smut can cause losses in cane yield and sugar content that range from 30% to total crop failure. Losses tend to increase with the passage of years. Sporisorium scitamineum is the fungus that causes sugarcane smut. This fungus has the potential to infect all sugarcane species unless a species is resistant to biotrophic fungal pathogens. However, it remains unclear how the fungus breaks through the cell walls of sugarcane and causes the formation of black or gray whip-like structures on the sugarcane plants. Results Here, we report the first high-quality genome sequence of S. scitamineum assembled de novo with a contig N50 of 41 kb, a scaffold N50 of 884 kb and genome size 19.8 Mb, containing an estimated 6,636 genes. This phytopathogen can utilize a wide range of carbon and nitrogen sources. A reduced set of genes encoding plant cell wall hydrolytic enzymes leads to its biotrophic lifestyle, in which damage to the host should be minimized. As a bipolar mating fungus, a and b loci are linked and the mating-type locus segregates as a single locus. The S. scitamineum genome has only 6 G protein-coupled receptors (GPCRs) grouped into five classes, which are responsible for transducing extracellular signals into intracellular responses, however, the genome is without any PTH11-like GPCR. There are 192 virulence associated genes in the genome of S. scitamineum, among which 31 expressed in all the stages, which mainly encode for energy metabolism and redox of short-chain compound related enzymes. Sixty-eight candidates for secreted effector proteins (CSEPs) were found in the genome of S. scitamineum, and 32 of them expressed in the different stages of sugarcane infection, which are probably involved in infection and/or triggering defense responses. There are two non-ribosomal peptide synthetase (NRPS) gene clusters that are involved in the generation of ferrichrome and ferrichrome A, while the terpenes gene cluster is composed of three unknown function genes and seven biosynthesis related genes. Conclusions As a destructive pathogen to sugar industry, the S. scitamineum genome will facilitate future research on the genomic basis and the pathogenic mechanisms of sugarcane smut.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700