Band structure effect on the electron current oscillation in ultra-scaled GaSb Schottky MOSFET: tight-binding approach
详细信息    查看全文
  • 作者:Zahra Ahangari (1)
    Morteza Fathipour (2)
  • 关键词:Quantum confinement ; Band structure ; Current oscillation ; Schottky MOSFET ; Tight ; binding
  • 刊名:Journal of Computational Electronics
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:13
  • 期:2
  • 页码:375-382
  • 全文大小:
  • 参考文献:1. Kim, R., Rakshit, T., Kotlyar, R., Hasan, S., Weber, C.E.: Effects of surface orientation on the performance of idealized III–V thin-body ballistic n-MOSFETs. IEEE Electron Device Lett. 32(6), 746-48 (2011) CrossRef
    2. Luisier, M.: Performance comparison of GaSb, strained-Si, and InGaAs double-gate ultrathin-body n-FETs. IEEE Electron Device Lett. 32(12), 1686-688 (2011) CrossRef
    3. Yang, L., Neophytou, N., Klimeck, G., Lundstrom, M.S.: Band-structure effects on the performance of III–V ultrathin-body SOI MOSFETs. IEEE Trans. Electron Devices 55(5), 1116-122 (2008) CrossRef
    4. Seung, H.P., Yang, L., Kharche, N., Jelodar, M.S., Klimeck, G., Lundstrom, M.S., Luisier, M.: Performance comparisons of III–V and strained-Si in planar FETs and nonplanar FinFETs at ultrashort gate length (12 nm). IEEE Electron Device Lett. 59(8), 2107-114 (2012) CrossRef
    5. Chen, S.H., Liao, W.S., Yang, H.C., Wang, S.J., Liaw, Y.G., Wang, H., Gu, H., Wang, M.C.: High-performance III–V MOSFET with nano-stacked high-k gate dielectric and 3D fin-shaped structure. Nanoscale Res. Lett. 7(1), 431-36 (2012) CrossRef
    6. Luisier, M.: RF performance potential of strained-Si, In0. 53Ga0. 47As, and GaSb double-gate ultra-thin-body n-FETs with Lg=10.7 nm. In: IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), pp. 1- (2012) CrossRef
    7. Passlack, M., Doornbos, G., Wann, C., Sun, Y.C.: Classification and benchmarking of III–V MOSFETs for CMOS. In: Symposium on VLSI Technology (VLSIT), pp. 155-56 (2010)
    8. Pal, H.S., Low, T., Lundstrom, M.S.: NEGF analysis of InGaAs Schottky barrier double gate MOSFETs. In: IEEE International Electron Devices Meeting (IEDM), pp. 1- (2008)
    9. Larson, J.M., Synder, J.P.: Overview and status of metal S/D Schottky-barrier MOSFET technology. IEEE Trans. Electron Devices 53, 1048-058 (2006) CrossRef
    10. Nishi, Y., Kinoshita, A., Hagishima, D.: Experimental study on performance improvement in dopant-segregated Schottky metal-oxide-semiconductor field-effect transistors. Jpn. J. Appl. Phys. 47(1), 99-03 (2008) CrossRef
    11. Afzalian, A., Flandre, D.: Computational study of dopant segregated nanoscale Schottky barrier MOSFETs for steep slope, low SD-resistance and high on-current gate-modulated resonant tunneling FETs. Solid-State Electron. 65-6, 123-29 (2011) CrossRef
    12. Guo, J., Lundstrom, M.: A computational study of thin-body, double gate Schottky barrier MOSFETs. IEEE Trans. Electron Devices 49(11), 1897-902 (2002) CrossRef
    13. Min, X., Runsheng, W., Ye, P.D.: GaSb inversion-mode PMOSFETs with atomic-layer-deposited Al2O3 as gate dielectric. IEEE Electron Device Lett. 32(7), 883-85 (2011) CrossRef
    14. Zota, C.B., Kim, S.H., Asakura, Y., Takenaka, M., Takagi, S.: Self-aligned metal S/D GaSb p-MOSFETs using Ni-GaSb alloys. In: Annual Device Research Conference (DRC), pp. 71-2 (2012) CrossRef
    15. Wang, C., Xu, M., Gu, J., Wei Zhang, D., Yeb, P.D.:?GaSb metal-oxide-semiconductor capacitors with atomic-layer-deposited HfAlO as gate dielectric. Electrochem. Solid-State Lett. 15(3), H51–H54 (2012) CrossRef
    16. Yuan, Z., Nainani, A., Sun, Y., Jason Lin, J.Y., Pianetta, P., Saraswat, K.C.: Schottky barrier height reduction for metal/n-GaSb contact by inserting TiO2 interfacial layer with low tunneling resistance. Appl. Phys. Lett. 98(17), 172106 (2011) CrossRef
    17. Hu, J., Saraswat, K.C., Philip Wong, H.S.: Metal/III–V Schottky barrier height tuning for the design of nonalloyed III–V field-effect transistor source/drain contacts. J. Appl. Phys. 107, 063712 (2010) CrossRef
    18. Yuan, Z., Nainani, A., Lin, J.Y., Bennett, B.R., Boos, J.B., Ancona, M.G., Saraswat, K.C.: Fermi-level pinning at metal/antimonides interface and demonstration of antimonides-based metal S/D Schottky pMOSFETs. In: Device Research Conf. Santa Barbara, pp. 143-44 (2011)
    19. Jancu, J.M., Scholz, R., Beltram, F., Bassani, F.: Empirical / spds ?/sup> tight-binding calculation for cubic semiconductors: general method and material parameters. Phys. Rev. B 57(11), 6493-507 (1998) CrossRef
    20. Lee, S., Oyafuso, F., Von Allmen, P., Klimeck, G.: Boundary conditions for the electronic structure of finite-extent embedded semiconductor nanostructures. Phys. Rev. B, Condens. Matter 69(4), 045316 (2004) CrossRef
    21. Ren, Z., Venugopal, R., Goasguen, S., Datta, S.: nanoMOS 2.5: a two-dimensional simulator for quantum transport in double-gate MOSFETs. IEEE Trans. Electron Devices 50(9), 1914-925 (2003) CrossRef
    22. Venugopal, R., Ren, Z., Datta, S., Lundstrom, M.S., Jovanovic, D.: Simulating quantum transport in nanoscale transistors: real versus mode-space approaches. J. Appl. Phys. 92(7), 3730-739 (2002) CrossRef
    23. Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge (2000)
    24. Bagwell, P.F., Orlando, T.P.: Landauer’s conductance formula and its generalization to finite voltages. Phys. Rev. B 40(3), 1456-464 (1989) CrossRef
    25. Vurgaftmana, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89(11), 5815-875 (2001) CrossRef
  • 作者单位:Zahra Ahangari (1)
    Morteza Fathipour (2)

    1. Faculty of Electrical Engineering, Shahre-Rey Branch, Islamic Azad University, Tehran, Iran
    2. School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
  • ISSN:1572-8137
文摘
This paper explores band structure effect on the quantum transport of a low-dimensional GaSb Schottky MOSFET (SBFET) for the implementation of III–V transistor with a low series resistance. Precise treatment of the full band structure is employed applying sp 3 d 5 s ?/sup> tight-binding (TB) formalism. A remarkable distinction between the thickness dependent effective masses extracted from the TB and the bulk values imply that the quantum confinement modifies the device performance. Strong transverse confinement leads to the effective Schottky barrier height increment. Owing to the adequate enhanced Schottky barriers at low drain voltages, a double barrier gate modulated potential well is formed along the channel. The double barrier profile creates a longitudinal quantum confinement and induces drain current oscillation at low temperatures. Significant factors that may affect the current oscillation are thoroughly investigated. Current oscillation is gradually smoothed out as the gate length shrinks down in ultra scaled structure. The results in this paper are paving a way to clarify the feasibility of this device in nanoscale regime.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700