Interactions between allelochemicals and the microbial community affect weed suppression following cover crop residue incorporation into soil
详细信息    查看全文
  • 作者:Yi Lou ; Adam S. Davis ; Anthony C. Yannarell
  • 关键词:Allelochemicals ; Isoflavones ; Red clover (Trifolium pratense L.) ; Soil microbes ; Weed suppression ; Wild mustard (Sinapis alba L.)
  • 刊名:Plant and Soil
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:399
  • 期:1-2
  • 页码:357-371
  • 全文大小:664 KB
  • 参考文献:Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc 2:875–877. doi:10.​1038/​nprot.​2007.​102 PubMed CrossRef
    Barnes JP, Putnam AR (1986) Evidence of allelopathy by residues and aqueous extracts of rye (Secale cereale). Weed Sci 34:384–390
    Barnes JP, Putnam AR, Burke BA, Aasen AJ (1987) Isolation and characterization of allelochemicals in Rye Herbage. Phytochemistry 26:1385–1390. doi:10.​1016/​S0031-9422(00)81818-X CrossRef
    Blum U, Gerig TM, Worsham AD, King LD (1993) Modification of allelopathic effects of P-Coumaric acid on morning-glory seedling biomass by glucose, methionine, and nitrate. J Chem Ecol 19:2791–2811. doi:10.​1007/​Bf00980584 PubMed CrossRef
    Carrascal LM, Galván I, Gordo O (2009) Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118:681–690. doi:10.​1111/​J.​1600-0706.​2008.​16881.​X CrossRef
    Chandler WA, Daniell JW (1974) Effect of leachates from peach soil and roots on bacterial canker and growth of peach seedlings. Phytopathology 64:1281–1284CrossRef
    Charudattan R (2001) Biological control of weeds by means of plant pathogens: significance for integrated weed management in modern agro-ecology. BioControl 46:229–260. doi:10.​1023/​A:​1011477531101 CrossRef
    Conklin AE, Erich MS, Liebman M, Lambert D, Gallandt ER, Halteman WA (2002) Effects of red clover (Trifolium pratense) green manure and compost soil amendments on wild mustard (Brassica kaber) growth and incidence of disease. Plant and Soil 238:245–256CrossRef
    Creamer NG, Bennett MA, Stinner BR, Cardina J, Regnier EE (1996) Mechanisms of weed suppression in cover crop-based production systems. HortScience 31:410–413
    Daayf F, El Hadrami A, El-Bebany AE, Henriquez MA, Yao Z, Derksen H, El-Hadrami I, Adam LR (2012) Phenolic compounds in plant defense and pathogen counter-defense mechanisms. Rec Adv Polyphen Res 3:191–208CrossRef
    Dabney SM, Schreiber JD, Rothrock CS, Johnson JR (1996) Cover crops affect Sorghum seedling growth. Agr J 88:961–970CrossRef
    Davis AS, Renner KA (2007) Influence of seed depth and pathogens on fatal germination of velvetleaf (Abutilon theophrasti) and giant foxtail (Setaria faberi). Weed Sci 55:30–35. doi:10.​1614/​W-06-099.​1 CrossRef
    Dyck E, Liebman M (1994) Soil fertility management as a factor in weed control: the effect of crimson clover residue, synthetic nitrogen fertilizer, and their interaction on emergence and early growth of lambsquarters and sweet corn. Plant and Soil 167:227–237CrossRef
    Dyck E, Liebman M (1995) Crop-weed interference as influenced by a leguminous or synthetic fertilizer nitrogen source .2. Rotation experiments with crimson clover, field corn, and lambsquarters. Agr Ecosyst Environ 56:109–120. doi:10.​1016/​0167-8809(95)00644-3 CrossRef
    Forney DR, Foy CL (1985) Phytotoxicity of products from rhizospheres of a sorghum-sudangrass hybrid (Sorghum bicolor x Sorghum sudanense). Weed Sci 33:597–604
    Gosselin R, Rodrigue D, Duchesne C (2010) A Bootstrap-VIP approach for selecting wavelength intervals in spectral imaging applications. Chemomet Intell Lab 100:12–21. doi:10.​1016/​j.​chemolab.​2009.​09.​005 CrossRef
    Harper SHT, Lynch JM (1982) The role of water-soluble components in phytotoxicity from decomposing straw. Plant and Soil 65:11–17. doi:10.​1007/​Bf02376798 CrossRef
    Inderjit (1996) Plant phenolics in allelopathy. Botan Rev 62:186–202. doi:10.​1007/​Bf02857921 CrossRef
    Inderjit (2005) Soil microorganisms: an important determinant of allelopathic activity. Plant and Soil 274:227–236. doi:10.​1007/​S11104-004-0159-X CrossRef
    Inderjit, Rawat DS, Foy CL (2004) Multifaceted approach to determine rice straw phytotoxicity. Can J Bot 82:168–176. doi:10.​1139/​B03-137 CrossRef
    Inderjit, Weston LA, Duke SO (2005) Challenges, achievements and opportunities in allelopathy research. J Plant Int 1:69–81. doi:10.​1080/​1742914060062253​5
    Jilani G, Mahmood S, Chaudhry AN, Hassan I, Akram M (2008) Allelochemicals: sources, toxicity and microbial transformation in soil—a review. Ann Microbiol 58:351–357CrossRef
    Kremer RJ (1993) Management of weed seed banks with microorganisms. Ecol Appl 3:42–52. doi:10.​2307/​1941791 CrossRef
    Krenn L, Unterrieder I, Ruprechter R (2002) Quantification of isoflavones in red clover by high-performance liquid chromatography. J Chromatogr B 777:123–128. doi:10.​1016/​S1570-0232(02)00079-X CrossRef
    Kruidhof HM, Bastiaans L, Kropff MJ (2009) Cover crop residue management for optimizing weed control. Plant and Soil 318:169–184. doi:10.​1007/​s11104-008-9827-6 CrossRef
    Levengood JM, Tam TM, Szafoni D (2010) A preliminary assessment of isoflavones in an agricultural environment. Illinois Sustain Tech Cent, Urbana, Illinois, US p 25. http://​www.​istc.​illinois.​edu/​info/​library_​docs/​TR/​TR42.​pdf
    Liebman M, Davis AS (2000) Integration of soil, crop and weed management in low-external-input farming systems. Weed Res 40:27–47CrossRef
    Liebman M, Davis AS (2009) Managing weeds in organic farming systems: an ecological approach. In: Francis C (ed) Organic farming: the ecological system. American Society of Agronomy, Madison
    Liebman M, Dyck E (1993) Crop-rotation and intercropping strategies for weed management. Ecol Appl 3:92–122. doi:10.​2307/​1941795 CrossRef
    Liebman M, Sundberg DN (2006) Seed mass affects the susceptibility of weed and crop species to phytotoxins extracted from red clover shoots. Weed Sci 54:340–345
    Lin LZ, He XG, Lindenmaier M, Yang J, Cleary M, Qiu SX, Cordell GA (2000) LC-ESI-MS study of the flavonoid glycoside malonates of red clover (Trifolium pratense). J Agr Food Chem 48:354–365. doi:10.​1021/​Jf991002+ CrossRef
    Liu Q, Xu R, Yan ZQ, Jin H, Cui HY, Lu LQ, Zhang DH, Qin B (2013) Phytotoxic allelochemicals from roots and root exudates of trifolium pratense. J Agr Food Chem 61:6321–6327. doi:10.​1021/​Jf401241e CrossRef
    Macias FA, Molinillo JMG, Varela RM, Galindo JCG (2007) Allelopathy—a natural alternative for weed control. Pest Manag Sci 63:327–348. doi:10.​1002/​Ps.​1342 PubMed CrossRef
    Mevik BH, Wehrens R (2007) The pls package: principal component and partial least squares regression in R. J Stat Softw 18(2):1–24
    Mirsky SB, Curran WS, Mortensen DM, Ryan MR, Shumway DL (2011) Timing of cover-crop management effects on weed suppression in no-till planted soybean using a roller-crimper. Weed Sci 59:380–389CrossRef
    Mohler CL, Dykeman C, Nelson EB, Ditommaso A (2012) Reduction in weed seedling emergence by pathogens following the incorporation of green crop residue. Weed Res 52:467–477. doi:10.​1111/​j.​1365-3180.​2012.​00940.​x CrossRef
    Moore MJ, Gillespie TJ, Swanton CJ (1994) Effect of cover crop mulches on weed emergence, weed biomass, and soybean (Glycine-Max) development. Weed Technol 8:512–518
    Moyer JR, Blackshaw RE, Smith EG, McGinn SM (2000) Cereal cover crops for weed suppression in a summer fallow-wheat cropping sequence. Can J Plant Sci 80:441–449CrossRef
    Nowak A, Wronkowska H (1987) On the efficiency of soil sterilization in autoclave. Zbl Mikrobiol 142:521–525
    Ohno T, Doolan KL (2001) Effects of red clover decomposition on phytotoxicity to wild mustard seedling growth. Appl Soil Ecol 16:187–192CrossRef
    Ohno T, Doolan K, Zibilske LM, Liebman M, Gallandt ER, Berube C (2000) Phytotoxic effects of red clover amended soils on wild mustard seedling growth. Agr Ecosyst Environ 78:187–192CrossRef
    Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Solymos P, Stevens HH, Wagner H (2009) Vegan: community ecology package. R Pack Ver 1:15–4
    Patrick Z, Toussoun T, Koch L (1964) Effect of crop-residue decomposition products on plant roots. Annu Rev Phytopathol 2:267–292CrossRef
    Reynolds HL, Packer A, Bever JD, Clay K (2003) Grassroots ecology: plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology 84:2281–2291CrossRef
    Rothrock CS, Kirkpatrick TL (1995) The influence of winter legume cover crops on soilborne plant pathogens and cotton seedling diseases. Plant Dis 79:167–171CrossRef
    Samedani B, Juraimi AS, Anwar MP, Rafii MY, Awadz SAS, Anuar AR (2013) Phytotoxic effects of Pueraria javanica litter on growth of weeds Asystasia gangetica and Pennisetum polystachion. Allelopath J 32:191–201
    Seigler DS (1996) Chemistry and mechanisms of allelopathic interactions. Agron J 88:876–885CrossRef
    Shajib MTI (2012) Isoflavonoid-biochanin A as an allelopathic agent for weed suppression: bioassays, LCMS-MS and principal component analysis. LAP Lambert Academic Publishing AG & Co KG, Berlin, Germany
    Shaw LJ, Hooker JE (2008) The fate and toxicity of the flavonoids naringenin and formononetin in soil. Soil Biol Biochem 40:528–536. doi:10.​1016/​j.​soilbio.​2007.​09.​021 CrossRef
    Shaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8:1867–1880. doi:10.​1111/​j.​1462-2920.​2006.​01141.​x PubMed CrossRef
    Singh HP, Batish DR, Kohli RK (2003) Allelopathic interactions and allelochemicals: new possibilities for sustainable weed management. Crit Rev Plant Sci 22:239–311. doi:10.​1080/​713610858 CrossRef
    Stancanelli R, Mazzaglia A, Tornmasini S, Calabro ML, Villari V, Guardo A, Ficarra P, Ficarra R (2007) The enhancement of isoflavones water solubility by complexation with modified cyclodextrins: a spectroscopic investigation with implications in the pharmaceutical analysis. J Pharmaceut Biomed 44:980–984. doi:10.​1016/​j.​jpba.​2007.​03.​025 CrossRef
    Stenlid G (1961) On the effects of some flavonoid pigments upon growth and ion absorption of wheat roots. Physiol Plant 14:659–670CrossRef
    Tamura S, Chang C-F, Suzuki A, Kumai S (1969) Chemical studies on “clover sickness” part I. Isolation and structural elucidation of two new isoflavonoids in red clover. Agric Biol Chem 33:391–397CrossRef
    Teasdale JR (1996) Contribution of cover crops to weed management in sustainable agricultural systems. J Prod Agric 9:475–479CrossRef
    Teasdale JR, Rice CP, Cai GM, Mangum RW (2012) Expression of allelopathy in the soil environment: soil concentration and activity of benzoxazinoid compounds released by rye cover crop residue. Plant Ecol 213:1893–1905. doi:10.​1007/​s11258-012-0057-x CrossRef
    Tebeest DO, Yang XB, Cisar CR (1992) The status of biological-control of weeds with fungal pathogens. Annu Rev Phytopathol 30:637–657. doi:10.​1146/​annurev.​py.​30.​090192.​003225 CrossRef
    Toussoun TA, Patrick ZA (1963) Effect of phytotoxic substances from decomposing plant residues on root rot of bean. Phytopathology 53:265–269
    Tsao R, Papadopoulos Y, Yang R, Young JC, McRae K (2006) Isoflavone profiles of red clovers and their distribution in different parts harvested at different growing stages. J Agr Food Chem 54:5797–5805. doi:10.​1021/​Jf0614589 CrossRef
    Wardle D (1995) Impacts of disturbance on detritus food webs in agro-ecosystems of contrasting tillage and weed management practices. Advan Ecol Res 26:105–185CrossRef
    Weston LA (1996) Utilization of allelopathy for weed management in agroecosystems. Agr J 88:860–866CrossRef
    Williamson GB, Obee EM, Weidenhamer JD (1992) Inhibition of schizachyrium-scoparium (Poaceae) by the allelochemical hydrocinnamic acid. J Chem Ecol 18:2095–2105. doi:10.​1007/​Bf00981930 PubMed CrossRef
    Wilson M, Hirano SS, Lindow SE (1999) Location and survival of leaf-associated bacteria in relation to pathogenicity and potential for growth within the leaf. Appl Environ Microb 65:1435–1443
    Wold S, Johansson E, Cocchi M (1993) PLS—partial least squares projections to latent structures. 3D QSAR Drug Des 1:523–550
    Wortman SE, Francis CA, Bernards MA, Blankenship EE, Lindquist JL (2013) Mechanical termination of diverse cover crop mixtures for improved weed suppression in organic cropping systems. Weed Sci 61:162–170. doi:10.​1614/​Ws-D-12-00066.​1 CrossRef
  • 作者单位:Yi Lou (1)
    Adam S. Davis (2)
    Anthony C. Yannarell (1)

    1. Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
    2. USDA-ARS, Global Change and Photosynthesis Research Unit, Urbana, IL, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Soil Science and Conservation
    Plant Physiology
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5036
文摘
Background and aims The objective of this study is to understand how soil microorganisms interact with cover crop-derived allelochemicals to suppress weed germination and growth following cover crop residue incorporation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700