The use of biomass production and allometric models to estimate carbon sequestration of Jatropha curcas L. plantations in western Burkina Faso
详细信息    查看全文
  • 作者:Philippe Bayen ; Fidèle Bognounou…
  • 关键词:Allometry ; Aboveground biomass ; Carbon content ; Prediction equation ; Plantations ; Biodiesel
  • 刊名:Environment, Development and Sustainability
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:18
  • 期:1
  • 页码:143-156
  • 全文大小:665 KB
  • 参考文献:Abugre, S., Oti-Boateng, C., & Yeboah, M. F. (2011). Litter fall and decomposition trend of Jatropha curcas L. leaves mulches under two environmental conditions. Agriculture and Biology Journal of North America, 2(3), 462–470.
    Achten, W. M. J., Maes, W. H., Reubens, B., Mathijs, E., Singh, V. P., Verchot, L., & Muys, B. (2010). Biomass production and allocation in Jatropha curcas L. seedlings under different levels of drought stress. Biomass and Bioenergy, 34(5), 667–676.CrossRef
    Achten, W. M. J., Verchot, L., Franken, Y. J., Mathijs, E., Singh, V. P., Aerts, R., & Muys, B. (2008). Jatropha bio-diesel production and use. Biomass and Bioenergy, 32(12), 1063–1084.CrossRef
    Allen, S. E., Grimshaw, H. M., & Rowland, A. P. (1986). Chemical analysis. In P. D. Moore & S. B. Chapman (Eds.), Methods in plant ecology (pp. 285–344). Boston: Blackwell Scientific Publications.
    Amarasinghe, M. D., & Balasubrananiam, S. (1992). Net primary productivity of two mangrove forests stands on the northwest coast of Sri Lanka. Hydrobiologia, 247, 37–47.CrossRef
    Araujo, T. M., Higuchi, N., & Carvalho, J. R. J. A. (1999). Comparison of formulae for biomass content determination in a tropical rain forest in the state of para, Brazil. Forest Ecology and Management, 117, 43–52.CrossRef
    Avery, T. E., & Burkhart, H. E. (1994). Forest measurements (p. 408). New York: McGraw-Hill.
    Bailis, R., & Mccarthy, H. (2011). Carbon impacts of direct land use change in semiarid woodlands converted to biofuel plantations in India and Brazil. Global Change Biology Bioenergy, 3, 449–460.CrossRef
    Baumert, S., Khamzina, A., & Vlek, P. L. G. (2014). Soil organic carbon sequestration in Jatropha curcas systems in Burkina Faso. Land Degradation and Development. doi:10.​1002/​ldr.​2310 .
    Bhattacharyya, T., Ray, S. K., Pal, D. K., Chandran, P., Mandal, C., & Wani, S. P. (2009). Soil carbon stock in India —Issues and priorities. Journal of the Indian Society of Soil Science, 57(4), 461–468.
    Brown, S. (2002). Measuring carbon in forests: current status and future challenges. Environment Pollution, 116, 363–372.CrossRef
    Carels, N. (2009). Jatropha curcas. A review. Advances in Botanical Research, 50, 39–86.CrossRef
    Chavan, B. L., & Rasal, G. B. (2011). Potentiality of Carbon sequestration in six year ages young plant from University campus of Aurangabad. Global Journal of Researches in Engineering, 11(7), 14–20.
    Chavan, B. L., & Rasal, G. B. (2012). Sequestered standing carbon stock in selective tree species grown in University campus at Aurangabad, Maharashtra, India. International Journal of Engineering Science and Technology, 2(7), 3003–3007.
    Clark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R., NI, J., & NIHolland, E. A. (2001). Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecological Applications, 11(2), 356–370.CrossRef
    Clough, B. F., Dixon, P., & Dalhaus, O. (1997). Allometric relationships for estimating biomass in multistemed mangrove trees. Australian Journal of Botany, 45, 1023–1031.CrossRef
    Datta, S. K., & Pandey, R. K. (1993). Applied Botany Abstracts, 1(2), 108–118.
    Derwisch, S., Schwendenmann, L., Olschewski, R., & Hölscher, D. (2009). Estimation and economic evaluation of aboveground carbon storage of Tectona grandis plantations in Western Panama. New Forests, 37, 227–240.CrossRef
    Djomo, A. N., Ibrahimab, A., Saborowskic, J., & Gravenhorsta, J. (2010). Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa. Forest Ecology and Management, 260, 1873–1885.CrossRef
    Evensen, C. I., Dierolf, T. S., & Yost, R. S. (1994). Growth of four tree species managed as hedgerows in response to liming on acid soil in west Sumatra, Indonesia. Agroforestry Systems, 27, 207–222.CrossRef
    Fairless, D. (2007). The little shrub that could—Maybe. Nature, 449, 652–655.CrossRef
    Firdaus, M. S., Hanif, A. H. M., Safiee, A. S. & Ismail, M. R. (2010). Carbon sequestration potential in soil and biomass of Jatropha curcas L. Presented at 19th World Congress of Soil Science, Soil Solutions for a Changing World. 1–6 August, Brisbane.
    Firdaus, M. S., & Husni, M. H. A. (2012). Planting Jatropha curcas on constrained land: Emission and effects from land use change. The Scientific World Journal,. doi:10.​1100/​2012/​405084 .
    Fischer, G., Hizsnyik, E., Prieler, S., Shah, M., & van Velthuizen, H. (2009). Biofuels and food security, land use change and agricultural program. Laxenburg: International Institute for Applied Systems Analysis (IIASA).
    Ghezehei, S. B., Annandale, J. G., & Everson, C. S. (2009). Shoot allometry of Jatropha curcas. Southern Forests, 71(4), 279–286.CrossRef
    Ghosh, A., Chaudhary, D. R., Reddy, M. P., Rao, S. N., Chikara, J., & Pandya, J. B. (2007). Prospects for Jatropha methyl ester (biodiesel) in India. International Journal of Environmental Studies, 64, 659–674.CrossRef
    Green, R., Tobin, B., & O’shea, M. (2007). Above and below ground biomass measurements in an unthinned stand of Sitka spruce (Picea sitchensis (Bong) Carr.). European Journal of Forest Research, 126, 179–188.CrossRef
    Haas, W., Sterk, H., & Mittelbach, M. (2002). Novel 12-deoxy-16-hydroxyphorbol diesters isolated from the seed oil of Jatropha curca L. Journal of Natural Products, 65, 1434–1440.CrossRef
    IPCC. (2003). Good practice guidance for land use, land use change and forestry. Tokyo: Institute for Global Environmental Strategies.
    IPCC. (2006). Guidelines for national greenhouse gas inventories, Prepared by the national greenhouse gas inventories programme. In H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, K. Tanabe (Eds.), Forestry and other land use, vol. 4, IGES, Japan.
    Jingura, R. M., Matengaifa, R., Musademba, D., & Musiyiwa, K. (2011). Characterisation of land types and agro-ecological conditions for production of Jatropha as a feedstock for biofuels in Zimbabwe. Biomass and Bioenergy, 35, 2080–2086.CrossRef
    Kagambega, W. F., Thiombiano, A., Traore, S., Zougmore, R., & Boussim, J. I. (2011). Survival and growth responses of Jatropha curcas L. to three restoration techniques on degraded soils in Burkina Faso. Annals of Forest Research, 54(2), 171–184.
    Kang, B. T., Caveness, F. E., Tian, G., & Kolawole, G. O. (1999). Long-term alley cropping with four species on an Alfisol in southwest Nigeria-effect on crop performance, soil chemical properties and nematode population. Nutrient Cycling in Agroecosystems, 54, 145–155.CrossRef
    Kaushik, N., Kumar, K., Kumar, S., Kaushik, N., & Roy, S. (2007). Genetic variability and divergence studies in seed traits and oil content of Jatropha (Jatropha curcas L.) accessions. Biomass and Bioenergy, 31, 497–502.CrossRef
    Ketterings, M. Q., Coe, R., Noordwijk, M. V., Amagau, Y., & Palm, A. C. (2001). Reducing uncertainty in the use of allometric biomass equations for predicting above ground tree biomass in mixed secondary forest. Forest Ecology and Management, 146, 199–209.CrossRef
    Khan, M. N. I., & Faruque, O. (2010). Allometric relationships for predicting the stem volume in a Dalbergia sissoo Roxb. plantation in Bangladesh. iForest, 3, 153–158.CrossRef
    Khan, M. N. I., Suwa, R., & Hagihara, A. (2005). Allometric relationships for estimating the aboveground phytomass and leaf area of mangrove Kandelia candal (L.) Druce trees in the Manko Wetland, Okinawa Island Japan. Trees, 19, 266–272.CrossRef
    Litton, C. M., & Kauffman, J. B. (2008). Allometric models for predicting aboveground biomass in two widespread woody plants in Hawaii. Biotropica, 40(3), 313–320.CrossRef
    Madgwick, H. A. I., Frederick, D. J., & Tew, D. T. (1991). Biomass relationships in stands of Eucalyptus species. Bioresource technology, 37, 85–91.CrossRef
    Mascaro, J., Litton, C. M., Hughes, R. F., Uowolo, A., & Schnitzer, S. A. (2011). Minimizing bias in biomass allometry: Model selection and log-transformation of data. Biotropica, 43(6), 649–653.CrossRef
    Mbow, C., Verstraete, M. M., Sambou, B., Diaw, A. T., & Neufeldt, H. (2013). Allometric models for aboveground biomass in dry savanna trees of the Sudan and Sudan–Guinean ecosystems of Southern Senegal. Journal of Forest Research. doi:10.​1007/​s10310-013-0414-1 .
    Ndong, R., Montrejaud-Vignoles, M., Saint Girons, O., Gabrielle, B., Pirot, R., Domergue, M., & Sablayrolles, C. (2009). Life cycle assessment of biofuels from Jatropha curcas in West Africa: A field study. Global Change Biology Bioenergy, 1(3), 197–210.CrossRef
    Negi, J. D. S., Manhas, R. K., & Chauhan, P. S. (2003). Carbon allocation in different components of some tree species of India: A new approach for carbon estimation. Current Science, 85(11), 1528–1531.
    Nelson, B. W., Mesquita, R., Pereira, J. L. G., De Souza, S. G. A., Batista, G. T., & Couta, L. B. (1999). Allometric regressions for improved estimate of secondary forest biomass in the Central Amazon. Forest Ecology and Management, 117, 149–167.CrossRef
    Ong, J. E., Gong, W. K., & Wong, C. H. (2004). Allometry and partitioning of the mangrove, Rhizophora apiculata. Forest Ecology and Management, 188, 395–408.CrossRef
    Openshaw, K. (2000). A review of Jatropha curcas: An oil plant of unfulfilled promise. Biomass and Bioenergy, 19, 1–15.CrossRef
    Peltier, R., Forkong, C. N., Ntoupka, M., Manlay, R., Henry, M., & Morillon, V. (2007). Évaluation du stock de carbone et de la productivité en bois d’un parc à karités du Nord-Cameroun. Bois et Forêts des Tropiques, 294(4), 39–50.
    Pilli, R., Anfodillo, T., & Carrer, M. (2006). Towards a functional and simplified allometry for estimating forest biomass. Forest Ecology and Management, 237, 583–593.CrossRef
    Preece, N. D., Crowley, G. M., Lawes, M. J., & Van Oosterzee, P. (2012). Comparing aboveground biomass among forest types in wet tropics: Small stems and plantation types matter in carbon accounting. Forest Ecology and Management, 264, 228–237.CrossRef
    R Development Core T. (2010). R development core team R: A language and environment for statistical computing. Vienna: R Foundation for Statistical computing.
    Ragland, K. W., Aerts, D. J., & Baker, A. J. (1991). Properties of wood for combustion analysis. Bioresource technology, 37(2), 161–168.CrossRef
    Rana, B. S., Rao, O. P., & Singh, B. P. (2001). Biomass production in 7 year old plantations of Casuarina equisetifolia on sodic soil. Troppical Ecology, 42(2), 207–212.
    Rasmussen, L. V., Rasmussen, K., & Bruun, T. B. (2012). Impacts of Jatropha-based biodiesel production on above and below-ground carbon stocks: A case study from Mozambique. Energy policy, 51, 728–736.CrossRef
    Sop, T., Kagambega, W. F., Bellefontaine, R., Schmiedel, U., & Thiombiano, A. (2011). Effects of organic amendment on early growth performance of Jatropha curcas L. on a severely degraded site in the Sub-Sahel of Burkina Faso. Agroforestry Systems, 86, 387–399.CrossRef
    Srivastavaa, P., Sharma, Y. K., & Singh, N. (2014). Soil carbon sequestration potential of Jatropha curcas L. growing invarying soil conditions. Ecological Engineering, 68, 155–166.CrossRef
    Stephy, D. M., Abbie, C., David, L. S., George, Y. K. P., & Iain, H. W. (2013). Allometry for biomass estimation in Jatropha shrubs planted as boundary hedge in farmers’ fields. Forests, 4, 218–233.CrossRef
    Swamy, S. L., & Puri, S. (2005). Biomass production and carbon sequestration of Gmelina arborea in plantation and agroforestry system in India. Agroforestry Systems, 64, 181–195.CrossRef
    Ter-mikaelian, M. T., & Korzukhin, M. D. (1997). Biomass equation for sixty-five North American tree species. Forest Ecology and Management, 97, 1–24.CrossRef
    Wani, S. P., Girish, C., Sahrawat, K. L., Srinivasa, C. H. R., Raghvendra, G., Susanna, P., & Pavani, M. (2012). Carbon sequestration and land rehabilitation through Jatropha curcas (L.) plantation in degraded lands. Agriculture, Ecosystems and Environment, 161, 112–120.CrossRef
    Wani, S. P., Sahrawat, K. L., Sreedevi, T. K., Bhattacharyya, T., & Srinivasa, C. H. R. (2007). Carbon sequestration in the semi-arid tropics for improving livelihoods. International Journal of Environmental Studies, 64(6), 719–727.CrossRef
    William, F., Jose, R. M., & Frederico, E. A. (2011). Carbon accumulation in aboveground and belowground biomass and soil of different age native forest plantations in the humid tropical lowlands of Costa Rica. Forest Ecology and Management, 262, 1400–1408.CrossRef
    Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, 1, 3–14.CrossRef
    Zuur, A. F., Ieno, E. N., & Smith, G. M. (2007). Analysing ecological data (p. 680). Springer: New York.CrossRef
  • 作者单位:Philippe Bayen (1)
    Fidèle Bognounou (2)
    Anne Mette Lykke (3)
    Makido Ouédraogo (4)
    Adjima Thiombiano (1)

    1. Laboratory of Plant Biology and Ecology, University of Ouagadougou, 09 BP 848, Ouagadougou 09, Burkina Faso
    2. Department of Biological Sciences, University of Québec, Montréal, QC, Canada
    3. Department of Bioscience, Aarhus University, Aarhus, Denmark
    4. Department of Research and Development, Agritech-Faso, Ouagadougou, Burkina Faso
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environmental Management
    Economic Growth
    Ecology
    Economic Geology
    Environmental Economics
  • 出版者:Springer Netherlands
  • ISSN:1573-2975
文摘
The topic of carbon sequestration in plants has received much attention recently due to concerns about global climate change, which is being exacerbated by deforestation. In the early days of the global bioenergy boom, the private sector and non-government organizations enthusiastically promoted the planting of Jatropha curcas L. as a key candidate shrub species for the production of bioenergy in West Africa. This study investigates the aboveground biomass production and carbon sequestration potential of J. curcas, which is already widely cultivated for the production of oil seeds, biodiesel and biokerosene. The specific objective is to use a destructive method to develop allometric prediction equations of the aboveground biomass production of J. curcas plantations. 38 J. curcas shrubs were harvested and weighed in order to estimate biomass production. These data were used to develop allometric equations for the estimation of wood, leaf and total aboveground biomass production. The best-fit models found for estimating shrub component biomass and total aboveground biomass production were of the power form. All of the regression equations relating the prediction of leaf biomass, wood biomass and total aboveground biomass with J. curcas diameter at 20 cm above the ground (D) were statistically significant (p < 0.001) and also presented the highest goodness of fit (high R 2). The aboveground biomass carbon content was estimated using the ash method. Carbon content in leaves and wood was, respectively, 48 and 54 %. The current established allometric equations can be helpful to provide a rapid estimation of the aboveground biomass and C stock for J. curcas biofuel projects in semi-arid conditions. Keywords Allometry Aboveground biomass Carbon content Prediction equation Plantations Biodiesel

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700