Thermal analysis study on the grain refinement of Al–15Zn–2.5Mg–2.5Cu alloy
详细信息    查看全文
  • 作者:S. Mostafapoor ; M. Malekan ; M. Emamy
  • 关键词:Al–Zn–Mg–Cu alloy ; Grain refinement ; Solidification ; Thermal analysis
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2017
  • 出版时间:March 2017
  • 年:2017
  • 卷:127
  • 期:3
  • 页码:1941-1952
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Physical Chemistry; Analytical Chemistry; Polymer Sciences; Inorganic Chemistry; Measurement Science and Instrumentation;
  • 出版者:Springer Netherlands
  • ISSN:1588-2926
  • 卷排序:127
文摘
Computer-aided cooling curve analysis is a reliable method to characterize the solidification behavior of an alloy. In this study, the effect of Al–5Ti–1B grain refiner on the solidification path, microstructure and macrostructure of a new Al–Zn–Mg–Cu super high-strength aluminum alloy containing high amounts of zinc was investigated using thermal analysis technique. The grain size measurement showed that Al–5Ti–1B reduces the grain size from 1402 to 405 μm. Solidification parameters in the liquidus region were in a good accordance with microstructural results. The addition of 1 mass% of Al–5Ti–1B grain refiner decreased ΔTN from 9.1 to 7.7 °C. It also diminished recalescence undercooling from 1.42 to 0.32 °C. The grain refinement also altered dendritic structure of the alloy from a coarse, elongated and non-uniform to a rosette and more uniform shape. Moreover, the grain refiner resulted in a more uniform distribution of eutectic structure between dendrite arms. Furthermore, the grain refinement enhanced fraction of solid at dendrite coherency point from 21 % for unrefined alloy to 25 % for the alloy containing 1 mass% Al–5Ti–1B. In the same trend, the addition of 1 mass% Al–5Ti–1B reduced the amounts of porosity from 2.3 to 1.8 %.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700