A phase-locked loop frequency tracking system for portable microelectromechanical piezoresistive cantilever mass sensors
详细信息    查看全文
  • 作者:Hutomo Suryo Wasisto (1)
    Qing Zhang (1)
    Stephan Merzsch (1)
    Andreas Waag (1)
    Erwin Peiner (1)
  • 刊名:Microsystem Technologies
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:20
  • 期:4-5
  • 页码:559-569
  • 全文大小:2,421 KB
  • 参考文献:1. Abramovitch D (2002) Phase-locked loops: a control centric tutorial. Proceedings of the American Control Conference 1:1-5. doi:10.1109/ACC.2002.1024769
    2. Cahn Z, Siegel M (2011) Electronic cigarettes as a harm reduction strategy for tobacco control: a step forward or a repeat of past mistakes? J Public Health Policy 32:16-1. doi:10.1057/jphp.2010.41 CrossRef
    3. Calleja M, Nordstr?m M, álvareza M, Tamayo J, Lechuga LM, Boisen A (2005) Highly sensitive polymer-based cantilever-sensors for DNA detection. Ultramicroscopy 105:215-22. doi:10.1016/j.ultramic.2005.06.039 CrossRef
    4. Etter J-F, Bullen C (2011) Electronic cigarette: users profile, utilization, satisfaction and perceived efficacy. Addiction 106:2017-028. doi:10.1111/j.1360-0443.2011.03505.x CrossRef
    5. Hsieh G-C, Hung JC (1996) Phase-locked loop techniques-a survey. IEEE Trans Industr Electron 43:609-15. doi:10.1109/41.544547 CrossRef
    6. Koev ST, Fernandes R, Bentley WE, Ghodssi R (2009) A cantilever sensor with an integrated optical readout for detection of enzymatically produced homocysteine. IEEE Trans Biomed Circuits Syst 3:6. doi:10.1109/TBCAS.2009.2026634 CrossRef
    7. Li H-C, Tseng S-H, Huang P-C, Lu MS-C (2012) Study of CMOS micro machined self-oscillating loop utilizing a phase-locked loop-driving circuit. J. Micromech Microeng 22:055024. doi:10.1088/0960-1317/22/5/055024
    8. Maksimovic D (1997) CMOS 4046 phase-locked loop. University of Colorado, Boulder, pp 1-0
    9. Patel A, Kothari M, Webster JG, Tompkins WJ, Wertsch JJ (1989) A capacitance pressure sensor using a phase-locked loop. J Rehabil Res Dev 26:55-2
    10. Samarao AK, Ayazi F (2009) Temperature compensation of silicon micromechanical resonators via degenerate doping. In: Proceedings IEEE International Electron Devices Meeting (IEDM), pp 33.2.1-3.2.4. doi:10.1109/IEDM.2009.5424221
    11. Sandberg R, Svendsen W, Molhave K, Boisen A (2005) Temperature and pressure dependence of resonant in multi-layer micro cantilevers. J Micromech Microeng 15:1454-458. doi:10.1088/0960-1317/15/8/011 CrossRef
    12. Schripp T, Markewitz D, Uhde E, Salthammer T (2012) Does e-cigarette consumption cause passive vaping? Indoor Air 23:1-. doi:10.1111/j.1600-0668.2012.00792.x
    13. Smithgall DH (1975) A phase-locked loop motor control system. IEEE Transactions on Industrial Electronics and Control Instrumentation IECI-22:487-90. doi:10.1109/TIECI.1975.351315
    14. Stark RW (2004) Optical lever detection in higher eigenmode dynamic atomic force microscopy. Rev Sci Instrum 75:5053-055. doi:10.1063/1.1808058 CrossRef
    15. Svensson S, Olin AC, Hellgren J (2006) Increased net water loss by oral compared to nasal expiration in healthy subjects. Rhinology 44:74-7
    16. Ting HW, Wang HY (2010) Improvement of stop-band attenuation for the sallen-key low-pass filter. In: Proceedings of international symposium on next-generation electronics (ISNE), 158-61. doi:10.1109/ISNE.2010.5669175
    17. Tsu ME, Babb AL, Ralph DD, Hlastala MP (1988) Dynamics of heat, water, and soluble gas exchange in the human airways: 1. A model study. Ann Biomed Eng 16:547-71. doi:10.1007/BF02368015 CrossRef
    18. Villarroya M, Verd J, Teva J, Abadal G, Forsen E, Murano FP, Uranga A, Figueras E, Montserrat J, Esteve J, Boisen A, Barniol N (2006) System on chip mass sensor based on polysilicon cantilevers arrays for multiple detection. Sens Actuators A 132:154-64. doi:10.1016/j.sna.2006.04.002 CrossRef
    19. Wasisto HS, Merzsch S, Stranz A, Waag A, Kirsch I, Uhde E, Salthammer T, Peiner E (2011) A resonant cantilever sensor for monitoring airborne nanoparticles. Proceedings of the 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS 2011), Beijing, Republic of China, 1116-119. doi:10.1109/TRANSDUCERS.2011.5969233
    20. Wasisto HS, Merzsch S, Waag A, Uhde E, Salthammer T, Peiner E (2013a) Airborne engineered nanoparticle mass sensor based on a silicon resonant cantilever. Sens Actuators B Chemical 180:77-9. doi:10.1016/j.snb.2012.04.003 CrossRef
    21. Wasisto HS, Merzsch S, Stranz A, Waag A, Uhde E, Salthammer T, Peiner E (2013b) Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection. Sens Actuators B Chemical 189:146-56. doi:10.1016/j.snb.2013.02.053 CrossRef
    22. Wasisto HS, Merzsch S, Stranz A, Waag A, Uhde E, Salthammer T, Peiner E (2013c) Silicon nanowire resonators: aerosol nanoparticle mass sensing in the workplace. IEEE Nanatechnol Mag 7:18-3. doi:10.1109/MNANO.2013.2260462 CrossRef
    23. Wasisto HS, Merzsch S, Waag A, Uhde E, Salthammer T, Peiner E (2013d) Portable cantilever-based airborne nanoparticle detector. Sens Actuators B Chemical 187:118-27. doi:10.1016/j.snb.2012.09.074 CrossRef
    24. Wasisto HS, Merzsch S, Waag A, Uhde E, Salthammer T, Peiner E (2013e) Evaluation of photoresist-based nanoparticle removal method for recycling silicon cantilever mass sensors. Sens Actuators A 202:90-9. doi:10.1016/j.sna.2012.12.016 CrossRef
    25. Wu C-H, Hsieh H-H, Ku P-C, Lu L-H (2010) A differential Sallen-key low-pass filter in amorphous-silicon technology. J Disp Technol 6:207-14. doi:10.1109/JDT.2010.2044631 CrossRef
    26. Xiu L, Li Z (2012) Low-power instrumentation amplifier IC design for ECG system applications. Procedia Eng 29:1533-538. doi:10.1016/j.proeng.2012.01.168 CrossRef
    27. Yu H, Li X, Gan X, Liu Y, Liu X, Xu P, Li J, Liu M (2009) Resonant-cantilever bio/chemical sensors with an integrated heater for both resonance exciting optimization and sensing repeatability enhancement. J Micromech Microeng 19:045023. doi:10.1088/0960-1317/19/4/045023 CrossRef
  • 作者单位:Hutomo Suryo Wasisto (1)
    Qing Zhang (1)
    Stephan Merzsch (1)
    Andreas Waag (1)
    Erwin Peiner (1)

    1. Institute of Semiconductor Technology (IHT), Braunschweig University of Technology, Hans-Sommer-Stra?e 66, 38106, Brunswick, Germany
  • ISSN:1432-1858
文摘
A closed-loop circuit is developed in this work for tracking the resonant frequency of silicon microcantilever mass sensors. The proposed closed-loop system is mainly based on a phase-locked loop (PLL) circuit. To lock onto the resonant frequency of the resonator, an actuation signal generated from a voltage-controlled oscillator is fed back to the input reference signal of the cantilever sensor. In addition to the PLL circuit, an instrumentation amplifier and an active low-pass filter are connected to the system for gaining the cantilever output signal and transforming a rectangular PLL output signal into a sinusoidal signal used for sensor actuation, respectively. To demonstrate the functionality of the system, a self-sensing silicon cantilever resonator with a built-in piezoresistive Wheatstone bridge is fabricated and integrated with the circuit. A piezoactuator is employed to actuate the cantilever into resonance. From the measurement results, the integrated closed-loop system is successfully employed to characterize a 9.4?kHz cantilever sensor under ambient temperature cross-sensitivity yielding a sensor temperature coefficient of ?2.8?ppm/°C. In addition to it, the sensor was also exposed to exhaled human breath condensates and e-cigarette aerosols to test the sensor sensitivity obtained from mass-loading effects. With a high frequency stability (i.e., a frequency deviation as low as 0.02?Hz), this developed system is intended to support the miniaturization of the instrumentation modules for cantilever-based nanoparticle detectors (CANTORs).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700