Effect of the degree of substitution on the hydrophobicity of acetylated cellulose for production of liquid marbles
详细信息    查看全文
  • 作者:Xingman Zhou ; Xinxing Lin ; Kevin L. White ; Shan Lin ; Hui Wu ; Shilin Cao…
  • 关键词:Cellulose acetate ; Degree of substitution ; Hydrophobicity ; Liquid marble
  • 刊名:Cellulose
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:23
  • 期:1
  • 页码:811-821
  • 全文大小:1,164 KB
  • 参考文献:Amin M, Abbas NS, Hussain MA, Edgar KJ, Tahir MN, Tremel W, Sher M (2015) Cellulose ether derivatives: a new platform for prodrug formation of fluoroquinolone antibiotics. Cellulose 22:2011–2022CrossRef
    Andresen M, Johansson L-S, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677CrossRef
    Ashori A, Babaee M, Jonoobi M, Hamzeh Y (2014) Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohydr Polym 102:369–375CrossRef
    ASTM D871-96 (2004) Standard test methods of testing cellulose acetate (solution method; procedure A)
    Aussillous P, Quere D (2001) Liquid marbles. Nature 411:924–927CrossRef
    Aussillous P, Quere D (2006) Properties of liquid marbles. Proc R Soc A 462:973–999CrossRef
    Avila Ramirez JA, Juan Suriano C, Cerrutti P, Laura Foresti M (2014) Surface esterification of cellulose nanofibers by a simple organocatalytic methodology. Carbohydr Polym 114:416–423CrossRef
    Bormashenko E (2011) Liquid marbles: properties and applications. Curr Opin Colloid Interface Sci 16:266–271CrossRef
    Bormashenko E, Stein T, Pogreb R, Aurbach D (2009) “Petal effect” on surfaces based on lycopodium: high-stick surfaces demonstrating high apparent contact angles. J Phys Chem C 113:5568–5572CrossRef
    Cai J, Zhang LN, Zhou JP, Li H, Chen H, Jin HM (2004) Novel fibers prepared from cellulose in NaOH/urea aqueous solution. Macromol Rapid Commun 25:1558–1562CrossRef
    Cai J, Zhang L, Zhou J, Qi H, Chen H, Kondo T, Chen X, Chu B (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825CrossRef
    Cao SL, Ma XJ, Lin L, Huang F, Huang LL, Chen LH (2014) Morphological and chemical characterization of green bamboo (Dendrocalamopsis oldhami (Munro) Keng f.) for dissolving pulp production. Bioresources 9:4528–4539CrossRef
    Carlmark A, Malmstrom E (2002) Atom transfer radical polymerization from cellulose fibers at ambient temperature. J Am Chem Soc 124:900–901CrossRef
    Cengiz U, Erbil HY (2013) The lifetime of floating liquid marbles: the influence of particle size and effective surface tension. Soft Matter 9:8980–8991CrossRef
    Cetin NS, Tingaut P, Oezmen N, Henry N, Harper D, Dadmun M, Sebe G (2009) Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions. Macromol Biosci 9:997–1003CrossRef
    Cortina H, Martinez-Alonso C, Castillo-Ortega M, Hu H (2012) Cellulose acetate fibers covered by CdS nanoparticles for hybrid solar cell applications. Mater Sci Eng, B 177:1491–1496CrossRef
    Edgar KJ, Arnold KM, Blount WW, Lawniczak JE, Lowman DW (1995) Synthesis and properties of cellulose acetoacetates. Macromolecules 28:4122–4128CrossRef
    Frisoni G, Baiardo M, Scandola M, Lednická D, Cnockaert MC, Mergaert J, Swings J (2001) Natural cellulose fibers: heterogeneous acetylation kinetics and biodegradation behavior. Biomacromolecules 2:476–482CrossRef
    Gao LC, McCarthy TJ (2007) Ionic liquid marbles. Langmuir 23:10445–10447CrossRef
    Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43:2645–2651CrossRef
    Hapgood KP, Khanmohammadi B (2009) Granulation of hydrophobic powders. Powder Technol 189:253–262CrossRef
    Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4:2238–2244CrossRef
    Hu W, Chen S, Xu Q, Wang H (2011) Solvent-free acetylation of bacterial cellulose under moderate conditions. Carbohydr Polym 83:1575–1581CrossRef
    Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8:1973–1978CrossRef
    Jonoobi M, Mathew AP, Abdi MM, Makinejad MD, Oksman K (2012) A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. J Polym Environ 20:991–997CrossRef
    Kim DY, Nishiyama Y, Kuga S (2002) Surface acetylation of bacterial cellulose. Cellulose 9:361–367CrossRef
    Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRef
    Li M, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015a) Cellulose nanoparticles: Structure–Morphology–Rheology Relationships. ACS Sustain Chem Eng 3:821–832CrossRef
    Li MC, Wu QL, Song KL, Qing Y, Wu YQ (2015b) Cellulose nanoparticles as modifiers for Rheology and fluid loss in Bentonite water-based fluids. ACS Appl Mater Interfaces 7:5006–5016CrossRef
    Lin N, Huang J, Chang PR, Feng J, Yu J (2011) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly (lactic acid). Carbohydr Polym 83:1834–1842CrossRef
    Lin X, Ma W, Wu H, Cao S, Huang L, Chen L, Takahara A (2016) Superhydrophobic magnetic poly(DOPAm-co-PFOEA)/Fe3O4/cellulose microspheres for stable liquid marbles. Chem Commun. doi:10.​1039/​C1035CC08842A
    Liu H, Kar N, Edgar KJ (2012) Direct synthesis of cellulose adipate derivatives using adipic anhydride. Cellulose 19:1279–1293CrossRef
    Malm CJ, Tanghe LJ, Schmitt JT (1961) Catalysts for acetylation of cellulose. Ind Eng Chem 53:363–367CrossRef
    Matsukuma D, Watanabe H, Yamaguchi H, Takahara A (2011) Preparation of low-surface-energy poly[2-(perfluorooctyl)ethyl acrylate] microparticles and its application to liquid marble formation. Langmuir 27:1269–1274CrossRef
    McEleney P, Walker GM, Larmour IA, Bell SEJ (2009) Liquid marble formation using hydrophobic powders. Chem Eng J 147:373–382CrossRef
    McHale G, Newton MI (2011) Liquid marbles: principles and applications. Soft Matter 7:5473–5481CrossRef
    Mele E, Bayer IS, Nanni G, Heredia-Guerrero JA, Ruffilli R, Ayadi F, Marini L, Cingolani R, Athanassiou A (2014) Biomimetic approach for liquid encapsulation with nanofibrillar cloaks. Langmuir 30:2896–2902CrossRef
    Ogawa S, Watanabe H, Wang L, Jinnai H, McCarthy TJ, Takahara A (2014) Liquid marbles supported by monodisperse poly (methylsilsesquioxane) particles. Langmuir 30:9071–9075CrossRef
    Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747CrossRef
    Pike N, Richard D, Foster W, Mahadevan L (2002) How aphids lose their marbles. Proc R Soc B 269:1211–1215CrossRef
    Potthast A, Radosta S, Saake B, Lebioda S, Heinze T, Henniges U, Isogai A, Koschella A, Kosma P, Rosenau T, Schiehser S, Sixta H, Strlič M, Strobin G, Vorwerg W, Wetzel H (2015) Comparison testing of methods for gel permeation chromatography of cellulose: coming closer to a standard protocol. Cellulose 22:1591–1613CrossRef
    Puls J, Wilson S, Hölter D (2011) Degradation of cellulose acetate-based materials: a review. J Polym Environ 19:152–165CrossRef
    Rensch H-P, Riedl B (1993) An Infrared spectroscopic study of chemically modified chemithermomechanical pulp. J Wood Chem Technol 13:167–186CrossRef
    Sassi J-F, Chanzy H (1995) Ultrastructural aspects of the acetylation of cellulose. Cellulose 2:111–127CrossRef
    Shanbhag A, Barclay B, Koziara J, Shivanand P (2007) Application of cellulose acetate butyrate-based membrane for osmotic drug delivery. Cellulose 14:65–71CrossRef
    Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef
    Teramoto Y (2015) Functional thermoplastic materials from derivatives of cellulose and related structural polysaccharides. Molecules 20:5487CrossRef
    Tungprapa S, Puangparn T, Weerasombut M, Jangchud I, Fakum P, Semongkhol S, Meechaisue C, Supaphol P (2007) Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose 14:563–575CrossRef
    Tupa MV, Ramírez JAÁ, Vázquez A, Foresti ML (2015) Organocatalytic acetylation of starch: effect of reaction conditions on DS and characterisation of esterified granules. Food Chem 170:295–302CrossRef
    Wu J, Zhang J, Zhang H, He JS, Ren Q, Guo M (2004) Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules 5:266–268CrossRef
    Wu H, Watanabe H, Ma W, Fujimoto A, Higuchi T, Uesugi K, Takeuchi A, Suzuki Y, Jinnai H, Takahara A (2013) Robust liquid marbles stabilized with surface-modified halloysite nanotubes. Langmuir 29:14971–14975CrossRef
    Xu D, Voiges K, Elder T, Mischnick P, Edgar KJ (2012) Regioselective synthesis of cellulose ester homopolymers. Biomacromolecules 13:2195–2201CrossRef
    Xue YH, Wang HX, Zhao Y, Dai LM, Feng LF, Wang XG, Lin T (2010) Magnetic liquid marbles: a “precise” miniature reactor. Adv Mater 22:4814–4818CrossRef
    Zang D, Chen Z, Zhang Y, Lin K, Geng X, Binks BP (2013) Effect of particle hydrophobicity on the properties of liquid water marbles. Soft Matter 9:5067–5073CrossRef
    Zini E, Scandola M, Gatenholm P (2003) Heterogeneous acylation of flax fibers. Reaction kinetics and surface properties. Biomacromolecules 4:821–827CrossRef
  • 作者单位:Xingman Zhou (1) (2)
    Xinxing Lin (1)
    Kevin L. White (3)
    Shan Lin (1)
    Hui Wu (1)
    Shilin Cao (1)
    Liulian Huang (1)
    Lihui Chen (1) (2)

    1. College of Material Engineering, Fujian Agriculture and Forestry University, No. 15, Shangxiadian Road, Fuzhou, 350002, People’s Republic of China
    2. College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People’s Republic of China
    3. Akron Ascent Innovations, Akron, OH, 44311, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Bioorganic Chemistry
    Physical Chemistry
    Organic Chemistry
    Polymer Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-882X
文摘
Acetylated cellulose powders with varying degree of substitution (DS) were prepared by reacting cellulose with acetic anhydride. The effect of DS on the hydrophobic properties of acetylated cellulose was examined based on contact angle and mechanical stability measurements. The surface energy of the acetylated cellulose decreases with increasing DS, and for DS of 0.39, the acetylated cellulose was able to encapsulate a water droplet to form a liquid marble. The corresponding cellulose acetate powder-over-water spreading coefficient was ca. 8.9. Increasing DS also improved the mechanical stability of the liquid marble. This study opens important perspectives for the precise control of DS of cellulose acetate for various practical applications in membranes, filters, scaffolds, and textiles. Keywords Cellulose acetate Degree of substitution Hydrophobicity Liquid marble

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700