Antimicrobial activity of Alcaligenes sp. HPC 1271 against multidrug resistant bacteria
详细信息    查看全文
  • 作者:Atya Kapley ; Himgouri Tanksale ; Sneha Sagarkar…
  • 关键词:Alcaligenes ; Antimicrobial ; Draft genome ; Multidrug resistant ; Tunicamycin
  • 刊名:Functional & Integrative Genomics
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:16
  • 期:1
  • 页码:57-65
  • 全文大小:1,895 KB
  • 参考文献:Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26CrossRef PubMed
    Chen W, Qu D, Zhai L, Tao M, Wang Y, Lin S, Price NPJ, Deng Z (2010) Characterization of the tunicamycin gene cluster unveiling unique steps involved in its biosynthesis. Protein Cell 1:1093–1105CrossRef PubMed
    Clardy J, Fischbach MA, Walsh CT (2006) New antibiotics from bacterial natural products. Nat Biotechnol 24:1541–550CrossRef PubMed
    Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–33PubMedCentral CrossRef PubMed
    Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot 62:5–16CrossRef PubMed
    Du Y, Li T, Wang YG, Xia H (2004) Identification and functional analysis of dTDP-glucose-4, 6-dehydratase gene and its linked gene cluster in an aminoglycoside antibiotics producer of streptomyces tenebrarius H6. Curr Microbiol 49:99–107CrossRef PubMed
    Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13:894–901CrossRef PubMed
    Kapley A, De Baere T, Purohit HJ (2007a) Eubacterial diversity of activated biomass from a common effluent treatment plant. Res Microbiol 158:494–500CrossRef PubMed
    Kapley A, Siddiqui SN, Purohit HJ (2007b) A bacillus subtilis strain HPC248 from an effluent treatment plant with antibacterial activity. World J Microbiol Biotechnol 23:879–82CrossRef
    Kapley A, Sagarkar S, Tanksale H, Sharma N, Qureshi A, Purohit HJ (2013) Genome sequence of Alcaligenes sp. Strain HPC1271. Genome Announc. doi:10.​1128/​genomeA.​00235-12
    Kloosterman H, Hessels GI, Vrijbloed JW, Euverink GJ, Dijkhuizen L (2003) (De)regulation of key enzyme steps in the shikimate pathway and phenylalanine-specific pathway of the actinomycete amycolatopsis methanolica. Microbiology 149:3321–30CrossRef PubMed
    Kwon S, Kim TS, Yu GH, Jung JH, Park HD (2010) Bacterial community composition and diversity of a full-scale integrated fixed-film activated sludge system as investigated by pyrosequencing. J Microbiol Biotechnol 12:1717–723
    Miao L, Kwong TFN, Qian P-Y (2006) Effect of culture conditions on mycelial growth, antibacterial activity, and metabolite profiles of the marine-derived fungus Arthrinium c.f. saccharicola. Appl Microbiol Biotechnol 72:1063–1073
    O’Brien J, Wright GD (2011) An ecological perspective of microbial secondary metabolism. Curr Opin Biotechnol 22:552–8CrossRef PubMed
    Osbourn A (2010) Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation. Trends Genet 26:449–57CrossRef PubMed
    Pelaez F (2006) The historical delivery of antibiotics from microbial natural products-Can history repeat? Biochem Pharmacol 71:981–90CrossRef PubMed
    Rani A, Porwal S, Sharma R, Kapley A, Purohit HJ, Kalia VC (2008) Assessment of microbial diversity in effluent treatment plants by culture dependent and culture independent approaches. Bioresour Technol 99:7098–107CrossRef PubMed
    Singh SB, Barrett JF (2006) Empirical antibacterial drug discovery-foundation in natural products. Biochem Pharmacol 71:1006–015CrossRef PubMed
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–29PubMedCentral CrossRef PubMed
    Taylor PW (2013) Alternative natural sources for a new generation of antibacterial agents. Int J Antimicrob Agents 42:195–201CrossRef PubMed
    Vaishnav P, Demain AL (2011) Unexpected applications of secondary metabolites. Biotechnol Adv 29:223–29CrossRef PubMed
    Vara JA, Hutchinson CR (1988) Purification of thymidine-diphospho-D-glucose4 ,6-dehydratase from an erythromycin-producing strain of saccharopolyspora erythraea by high resolution liquid chromatography. J Biol Chem 263:14992–5PubMed
    Vicente M, Hodgson J, Massidda O, Tonjum T, Henriques-Normark B, Ron EZ (2006) The fallacies of hope: will we discover new antibiotics to combat pathogenic bacteria in time? FEMS Microbiol Rev 30:841–52CrossRef PubMed
    Wyszynski FJ, Lee SS, Yabe T, Wang H, Gomez-Escribano JP, Bibb MJ, Lee SJ, Davies GJ, Davis BG (2012) Biosynthesis of the tunicamycin antibiotics proceeds via unique exo-glycal intermediates. Nat Chem 4:539–46CrossRef PubMed
    Zheng J, Keatinge-Clay AT (2013) The status of type I polyketide synthase ketoreductases. Med Chem Commun 4:34–40CrossRef
  • 作者单位:Atya Kapley (1) (3)
    Himgouri Tanksale (1)
    Sneha Sagarkar (1)
    A. R. Prasad (2)
    Rathod Aravind Kumar (2)
    Nandita Sharma (1)
    Asifa Qureshi (1)
    Hemant J. Purohit (1)

    1. CSIR-NEERI, Nehru Marg, Nagpur, 440020, Maharashtra, India
    3. Environmental Genomics Division, National Environmental Engineering Research Institute, CSIR, Nehru Marg, Nagpur, 440 020, India
    2. CSIR-IICT, Uppal Road, Tarnaka, Hyderabad, 500007, Andhra Pradesh, India
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Plant Genetics and Genomics
    Microbial Genetics and Genomics
    Biochemistry
    Bioinformatics
    Animal Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1438-7948
文摘
Alcaligenes sp. HPC 1271 demonstrated antibacterial activity against multidrug resistant bacteria, Enterobacter sp., resistant to sulfamethoxazole, ampicillin, azithromycin, and tetracycline, as well as against Serratia sp. GMX1, resistant to the same antibiotics with the addition of netilmicin. The cell-free culture supernatant was analyzed for possible antibacterials by HPLC, and the active fraction was further identified by LC-MS. Results suggest the production of tunicamycin, a nucleoside antibiotic. The draft genome of this bacterial isolate was analyzed, and the 4.2 Mb sequence data revealed six secondary metabolite-producing clusters, identified using antiSMASH platform as ectoine, butyrolactone, phosphonate, terpene, polyketides, and nonribosomal peptide synthase (NRPS). Additionally, the draft genome demonstrated homology to the tunicamycin-producing gene cluster and also defined 30 ORFs linked to protein secretion that could also play a role in the antibacterial activity observed. Gene expression analysis demonstrated that both NRPS and dTDP-glucose 4,6-dehydratase gene clusters are functional and could be involved in antibacterial biosynthesis. Keywords Alcaligenes Antimicrobial Draft genome Multidrug resistant Tunicamycin

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700