Characterization of representative rpoB gene mutations leading to a significant change in toyocamycin production of Streptomyces diastatochromogenes 1628
详细信息    查看全文
  • 作者:Zheng Ma ; Shuai Luo ; Xianhao Xu…
  • 关键词:Toyocamycin ; Streptomyces ; Diastatochromogenes ; Rifamycin ; resistant mutant ; RpoB gene ; GUS
  • 刊名:Journal of Industrial Microbiology and Biotechnology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:43
  • 期:4
  • 页码:463-471
  • 全文大小:882 KB
  • 参考文献:1.Baltz RH (2014) Spontaneous and induced mutations to rifampicin, streptomycin and spectinomycin resistances in actinomycetes: mutagenic mechanisms and applications for strain improvement. J Antibiot (Tokyo) 67(9):619–624CrossRef
    2.Chater KF, Biro S, Lee KJ, Palmer T, Schrempf H (2010) The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 34(2):171–198CrossRef PubMed
    3.Chen W, Deng Z (2009) Current research status and vistas on metabolic engineering of nucleoside antibiotics. Chin J Antibiot 34(3):129–141 (In Chinese)
    4.Fukuda K, Tamura T, Ito H, Yamamoto S, Ochi K, Inagaki K (2010) Production improvement of antifungal, antitrypanosomal nucleoside sinefungin by rpoB mutation and optimization of resting cell system of Streptomyces incarnatus NRRL 8089. J Biosci Bioeng 109(5):459–465CrossRef PubMed
    5.Higo A, Hara H, Horinouchi S, Ohnishi Y (2012) Genome-wide distribution of AdpA, a global regulator for secondary metabolism and morphological differentiation in Streptomyces, revealed the extent and complexity of the AdpA regulatory network. DNA Res 19(3):259–273CrossRef PubMed PubMedCentral
    6.Higo A, Horinouchi S, Ohnishi Y (2011) Strict regulation of morphological differentiation and secondary metabolism by a positive feedback loop between two global regulators AdpA and BldA in Streptomyces griseus. Mol Microbiol 81(6):1607–1622CrossRef PubMed
    7.Hu H, Ochi K (2001) Novel approach for improving the productivity of antibiotic-producing strains by inducing combined resistant mutations. Appl Environ Microbiol 67(4):1885–1892CrossRef PubMed PubMedCentral
    8.Hu H, Zhang Q, Ochi K (2002) Activation of antibiotic biosynthesis by specified mutations in the rpoB gene (encoding the RNA polymerase beta subunit) of Streptomyces lividans. J Bacteriol 184(14):3984–3991CrossRef PubMed PubMedCentral
    9.Kieser T, Bibb MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics, 2nd edn. John Innes Foundation, England
    10.Kurosawa K, Hosaka T, Tamehiro N, Inaoka T, Ochi K (2006) Improvement of alpha-amylase production by modulation of ribosomal component protein S12 in Bacillus subtilis 168. Appl Environ Microbiol 72(1):71–77CrossRef PubMed PubMedCentral
    11.Lee HN, Kim JS, Kim P, Lee HS, Kim ES (2013) Repression of antibiotic downregulator WblA by AdpA in Streptomyces coelicolor. Appl Environ Microbiol 79(13):4159–4163CrossRef PubMed PubMedCentral
    12.Liu Z, Zhao X, Bai F (2013) Production of xylanase by an alkaline-tolerant marine-derived Streptomyces viridochromogenes strain and improvement by ribosome engineering. Appl Microbiol Biotechnol 97(10):4361–4368CrossRef PubMed
    13.Ma Z, Liu J, Bechthold A, Tao L, Shentu X, Bian Y, Yu X (2014) Development of intergeneric conjugal gene transfer system in Streptomyces diastatochromogenes 1628 and its application for improvement of toyocamycin production. Curr Microbiol 68(2):180–185CrossRef PubMed
    14.Ma Z, Tao L, Bechthold A, Shentu X, Bian Y, Yu X (2014) Overexpression of ribosome recycling factor is responsible for improvement of nucleotide antibiotic-toyocamycin in Streptomyces diastatochromogenes 1628. Appl Microbiol Biotechnol 98(11):5051–5058CrossRef PubMed
    15.Martin JF, Liras P (2010) Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces. Curr Opin Microbiol 13(3):263–273CrossRef PubMed
    16.Myronovskyi M, Welle E, Fedorenko V, Luzhetskyy A (2011) Beta-glucuronidase as a sensitive and versatile reporter in actinomycetes. Appl Environ Microbiol 77(15):5370–5383CrossRef PubMed PubMedCentral
    17.Ochi K (2007) From microbial differentiation to ribosome engineering. Biosci Biotechnol Biochem 71(6):1373–1386CrossRef PubMed
    18.Ochi K, Okamoto S, Tozawa Y, Inaoka T, Hosaka T, Xu J, Kurosawa K (2004) Ribosome engineering and secondary metabolite production. Adv Appl Microbiol 56:155–184CrossRef PubMed
    19.Okamoto-Hosoya Y, Hosaka T, Ochi K (2003) An aberrant protein synthesis activity is linked with antibiotic overproduction in rpsL mutants of Streptomyces coelicolor A3(2). Microbiology 149(Pt 11):3299–3309CrossRef PubMed
    20.Pan Y, Liu G, Yang H, Tian Y, Tan H (2009) The pleiotropic regulator AdpA-L directly controls the pathway-specific activator of nikkomycin biosynthesis in Streptomyces ansochromogenes. Mol Microbiol 72(3):710–723CrossRef PubMed
    21.Prakash D, Nawani NN (2014) A rapid and improved technique for scanning electron microscopy of actinomycetes. J Microbiol Methods 99:54–57CrossRef PubMed
    22.Rodriguez H, Rico S, Diaz M, Santamaria RI (2013) Two-component systems in Streptomyces: key regulators of antibiotic complex pathways. Microb Cell Fact 12:127CrossRef PubMed PubMedCentral
    23.Shentu X, Yu B, Bian Y, Hu J, Ma Z, Tong C, Yu X (2012) Biocontrol effect and taxonomy of antagonistic Streptomyces strain B28. Acta Phytopathol Sin 42(1):105–109 (In Chinese)
    24.Siegl T, Tokovenko B, Myronovskyi M, Luzhetskyy A (2013) Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes. Metab Eng 19:98–106CrossRef PubMed
    25.Suzuki T, Seta K, Nishikawa C, Hara E, Shigeno T, Nakajima-Kambe T (2015) Improved ethanol tolerance and ethanol production from glycerol in a streptomycin-resistant Klebsiella variicola mutant obtained by ribosome engineering. Bioresour Technol 176:156–162CrossRef PubMed
    26.Talà A, Wang G, Zemanova M, Okamoto S, Ochi K, Alifano P (2009) Activation of dormant bacterial genes by Nonomuraea sp. strain ATCC 39727 mutant-type RNA polymerase. J Bacteriol 191(3):805–814CrossRef PubMed PubMedCentral
    27.Tamehiro N, Hosaka T, Xu J, Hu H, Otake N, Ochi K (2003) Innovative approach for improvement of an antibiotic-overproducing industrial strain of Streptomyces albus. Appl Environ Microbiol 69:6412–6417CrossRef PubMed PubMedCentral
    28.Tanaka Y, Kasahara K, Hirose Y, Murakami K, Kugimiya R, Ochi K (2013) Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance (rpoB) mutations in actinomycetes. J Bacteriol 195(13):2959–2970CrossRef PubMed PubMedCentral
    29.Tao L, Ma Z, Xu X, Andreas B, Bian Y, Shentu X, Yu X (2015) Engineering Streptomyces diastatochromogenes 1628 to increase the production of toyocamycin. Eng Life Sci 15(8):779–787. doi:10.​1002/​elsc.​201400239 CrossRef
    30.Wang G, Hosaka T, Ochi K (2008) Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations. Appl Environ Microbiol 74(9):2834–2840CrossRef PubMed PubMedCentral
    31.Wolanski M, Donczew R, Kois-Ostrowska A, Masiewicz P, Jakimowicz D, Zakrzewska-Czerwinska J (2011) The level of AdpA directly affects expression of developmental genes in Streptomyces coelicolor. J Bacteriol 193(22):6358–6365CrossRef PubMed PubMedCentral
    32.Xu J, Tozawa Y, Lai C, Hayashi H, Ochi K (2002) A rifampicin resistance mutation in the rpoB gene confers ppGpp-independent antibiotic production in Streptomyces coelicolor A3(2). Mol Genet Genomics 268(2):179–189CrossRef PubMed
    33.Yu B, Shentu X, Yu X (2011) Antifungal activity of toyocamycin on Rhizoctonia solani Kühn. Chin J Biol Control 27(3):373–377 (In Chinese)
    34.Zhang Y, Huang H, Xu S, Wang B, Ju J, Tan H, Li W (2015) Activation and enhancement of Fredericamycin A production in deepsea-derived Streptomyces somaliensis SCSIO ZH66 by using ribosome engineering and response surface methodology. Microb Cell Fact 14:64CrossRef PubMed PubMedCentral
  • 作者单位:Zheng Ma (1)
    Shuai Luo (1)
    Xianhao Xu (1)
    Andreas Bechthold (2)
    Xiaoping Yu (1)

    1. Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, 310018, Hangzhou, Zhejiang Province, China
    2. Pharmazeutische Biologie und Biotechnologie, Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg im Breisgau, Stefan-Meier-Straße, 19, 79104, Freiburg, Germany
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Chemistry
    Biotechnology
    Genetic Engineering
    Biochemistry
    Bioinformatics
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1476-5535
文摘
Modification of enzymes involved in transcription- or translation-processes is an interesting way to increase secondary metabolite production in Streptomycetes. However, application of such methods has not been widely described for strains which produce nucleoside antibiotics. The nucleoside antibiotic toyocamycin (TM) is produced by Streptomyces diastatochromogenes 1628. For improving TM production in S. diastatochromogenes 1628, the strain was spread on rifamycin-resistant (Rifr) medium. Several spontaneous mutants were obtained with mutations in the rpoB gene which encodes a RNA polymerase β-subunit. The mutants which showed increased TM production were detected at a frequency of 7.5 % among the total Rifr mutants. Mutant 1628-T15 harboring amino acid substitution His437Arg was the best TM producer with a 4.5-fold increase in comparison to that of the wild-type strain. The worst producer was mutant 1628-T62 which also showed a poor sporulation behavior. RT-PCR was performed to study the transcription levels of the TM biosynthetic gene toyG in the parental strain as well as in mutants 1628-T15 and 1628-T62. The transcriptional level of toyG was higher in mutant 1628-T15 than that in parental strain 1628, while much lower in mutant 1628-T62. In mutant strain 1628-T62 the expression of adpA sd gene, which is required for morphological differentiation, was also much lower. Our studies also indicate that the introduction of mutations into rpoB is an effective strategy to improve the production of TM which is an important nucleoside antibiotic.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700