Quantum Capacity under Adversarial Quantum Noise: Arbitrarily Varying Quantum Channels
详细信息    查看全文
  • 作者:Rudolf Ahlswede (1)
    Igor Bjelakovi? (2)
    Holger Boche (3)
    Janis N?tzel (2)
  • 刊名:Communications in Mathematical Physics
  • 出版年:2013
  • 出版时间:January 2013
  • 年:2013
  • 卷:317
  • 期:1
  • 页码:103-156
  • 全文大小:600KB
  • 参考文献:1. Ahlswede R.: A Note on the Existence of the Weak Capacity for Channels with Arbitrarily Varying Channel Probability Functions and Its Relation to Shannon’s Zero Error Capacity. The Annals of Mathematical Statistics 41(3), 1027-033 (1970) CrossRef
    2. Ahlswede R.: Elimination of Correlation in Random Codes for Arbitrarily Varying Channels. Z. Wahr. verw. Geb. 44, 159-75 (1978) CrossRef
    3. Ahlswede R.: Coloring Hypergraphs: A New Approach to Multi-user Source Coding-II. J. Comb., Info. & Sys. Sci. 5(3), 220-68 (1980)
    4. Ahlswede R.: Arbitrarily Varying Channels with States Sequence Known to the Sender. IEEE Trans. Inf. Th. 32, 621-29 (1986) CrossRef
    5. Ahlswede R., Blinovsky V.: Classical Capacity of Classical-Quantum Arbitrarily Varying Channels. IEEE Trans. Inf. Th. 53(2), 526-33 (2007) CrossRef
    6. Ahlswede R., Wolfowitz J.: The Capacity of a Channel with Arbitrarily Varying Channel Probability Functions and Binary Output Alphabet. Z. Wahr. verw. Geb. 15, 186-94 (1970) CrossRef
    7. Barnum H., Knill E., Nielsen M.A.: On Quantum Fidelities and Channel Capacities. IEEE Trans. Inf. Theory 46(4), 1317-329 (2000) CrossRef
    8. Bennett C.H., DiVincenzo D.P., Smolin J.A.: Capacities of Quantum Erasure Channels. Phys. Rev. Lett. 78, 3217-220 (1997) CrossRef
    9. Bjelakovi? I., Boche H., N?tzel J.: Quantum capacity of a class of compound channels. Phys. Rev. A 78, 042331 (2008) CrossRef
    10. Bjelakovi?, I., Boche, H., N?tzel, J.: Entanglement transmission and generation under channel uncertainty: Universal quantum channel coding. Commun. Math. Phys. 292, 55-7 (2009); Bjelakovi?, I., Boche, H., N?tzel, J.: Erratum to ‘Entanglement transmission and generation under channel uncertainty: Universal quantum channel coding- Coummn. Math. Phys.
    11. Blackwell D., Breiman L., Thomasian A.J.: The capacities of certain channel classes under random coding. Ann. Math. Stat. 31, 558-67 (1960) CrossRef
    12. Choi M.-D.: Completely Positive Linear Maps on Complex Matrices. Lin. Alg. App. 10, 285-90 (1975) CrossRef
    13. Csiszar, I., K?rner, J.: / Information Theory; Coding Theorems for Discrete Memoryless Systems. Budapest, New York: Akadémiai Kiadó, Academic Press Inc., 1981
    14. Csiszar I., Narayan P.: The Capacity of the Arbitrarily Varying Channel Revisited: Positivity, Constraints. IEEE Trans. Inf. Th. 34(2), 181-93 (1989) CrossRef
    15. Devetak I., Shor P.W.: The Capacity of a Quantum Channel for Simultaneous Transmission of Classical and Quantum Information. Commun. Math. Phys. 256(2), 287-03 (2005) CrossRef
    16. Duan, R., Severini, S., Winter, A.: Zero-error communication via quantum channels, non-commutative graphs and a quantum Lovász θ function. http://arxiv.org/abs/1002.2514v2 [quant-ph], 2010
    17. Ericson T.: Exponential Error Bounds for Random Codes in the Arbitrarily Varying Channel. IEEE Trans. Inf. Th. 31(1), 42-8 (1985) CrossRef
    18. Fekete M.: über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. Math. Zeit. 17, 228 (1923) CrossRef
    19. Gilbert E.N.: A comparison of signaling alphabets. Bell System Tech. J. 31, 504-22 (1952)
    20. Horodecki M., Horodecki P.: Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A 59(6), 4206 (1999) CrossRef
    21. Horodecki M., Horodecki P., Horodecki R.: General teleportation channel, singlet fraction, and quasidistillation . Phys. Rev. A 60, 1888-898 (1999) CrossRef
    22. Kakutani S.: A Generalization of Brouwer’s Fixed Point Theorem. Duke Math. J. 8(3), 457-59 (1941) CrossRef
    23. Kiefer J., Wolfowitz J.: Channels with arbitrarily varying channel probability functions. Inf. and Cont. 5, 44-4 (1962) CrossRef
    24. Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: / Classical and Quantum Computation. Graduate Studies in Mathematics 47, Providence, RI: Amer. Math. Soc., 2002
    25. Knill E., Laflamme R.: Theory of quantum error-correcting codes. Phys. Rev. A 55(2), 900-11 (1997) CrossRef
    26. K?rner J., Orlitsky A.: Zero-error Information Theory. IEEE Trans. Inf. Theory 44(6), 2207-229 (1998) CrossRef
    27. Leung D., Smith G.: Continuity of quantum channel capacities. Commun. Math. Phys. 292, 201-15 (2009) CrossRef
    28. Lieb E.H., Ruskai M.B.: Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14, 1938 (1973) CrossRef
    29. Matousek, J.: / Lectures on Discrete Geometry. Graduate Texts in Mathematics. 212, Berlin-Heidelberg-New York: Springer, 2002
    30. Milman, V.D., Schechtman, G.: / Asymptotic Theory of Finite Dimensional Normed Spaces. Lecture Notes in Mathematics, 1200, Berlin-Heidelberg-New York: Springer-Verlag, 1986
    31. Paulsen, V.: / Completely Bounded Maps and Operator Algebras. Cambridge Studies in Advanced Mathematics 78, Cambridge: Cambridge University Press, 2002
    32. Pólya G., Szeg? V. / Problems and Theorems in Analysis I. Berlin-Heidelberg-New York: Springer, 1998
    33. Schumacher B., Nielsen M.A.: Quantum data processing and error correction. Phys. Rev. A 54(4), 2629 (1996) CrossRef
    34. Shannon, C.E.: The zero error capacity of a noisy channel. IRE Trans. Inf. Th. IT-2, 8-9 (1956)
    35. von Neumann J.: Zur Theorie der Gesellschaftsspiele. Math. Ann. 100, 295-20 (1928) CrossRef
    36. Webster R.: Convexity. Oxford University Press, Oxford (1994)
    37. Yard J., Devetak I., Hayden P.: Capacity theorems for quantum multiple access channels: Classical-quantum and quantum-quantum capacity Regions. IEEE Trans. Inf. Th. 54, 3091 (2008) CrossRef
  • 作者单位:Rudolf Ahlswede (1)
    Igor Bjelakovi? (2)
    Holger Boche (3)
    Janis N?tzel (2)

    1. Fakult?t für Mathematik, Universit?t Bielefeld, Universit?tsstr. 25, 33615, Bielefeld, Germany
    2. Theoretische Informationstechnik, Technische Universit?t München, 80291, München, Germany
    3. Lehrstuhl für Theoretische Informationstechnik, Technische Universit?t München, 80291, München, Germany
  • ISSN:1432-0916
文摘
We investigate entanglement transmission over an unknown channel in the presence of a third party (called the adversary), which is enabled to choose the channel from a given set of memoryless but non-stationary channels without informing the legitimate sender and receiver about the particular choice that he made. This channel model is called an arbitrarily varying quantum channel (AVQC). We derive a quantum version of Ahlswede’s dichotomy for classical arbitrarily varying channels. This includes a regularized formula for the common randomness-assisted capacity for entanglement transmission of an AVQC. Quite surprisingly and in contrast to the classical analog of the problem involving the maximal and average error probability, we find that the capacity for entanglement transmission of an AVQC always equals its strong subspace transmission capacity. These results are accompanied by different notions of symmetrizability (zero-capacity conditions) as well as by conditions for an AVQC to have a capacity described by a single-letter formula. In the final part of the paper the capacity of the erasure-AVQC is computed and some light shed on the connection between AVQCs and zero-error capacities. Additionally, we show by entirely elementary and operational arguments motivated by the theory of AVQCs that the quantum, classical, and entanglement-assisted zero-error capacities of quantum channels are generically zero and are discontinuous at every positivity point.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700