Arbitrarily Varying and Compound Classical-Quantum Channels and a Note on Quantum Zero-Error Capacities
详细信息    查看全文
  • 作者:Igor Bjelakovi? (18)
    Holger Boche (18)
    Gisbert Jan?en (18)
    Janis N?tzel (18)
  • 关键词:arbitrarily varying classical ; quantum channels ; compound classical ; quantum channels ; zero error capacity ; Ahlswedes dichotomy ; weak converse ; strong converse
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2013
  • 出版时间:2013
  • 年:2013
  • 卷:7777
  • 期:1
  • 页码:284-297
  • 全文大小:506KB
  • 参考文献:1. Ahlswede, R.: Certain results in coding theory for compound channels I. In: Proceedings of Colloquium on Information Theory, Debrecen (1967); J. Bolyai Math. Soc. 1, 35-0, Budapest (1968)
    2. Ahlswede, R., Wolfowitz, J.: The structure of capacity functions for compound channels. In: Proc. of the Internat. Symposium on Probability and Information Theory at McMaster University, pp. 12-4 (1969)
    3. Ahlswede, R.: A note on the existence of the weak capacity for channels with arbitrarily varying channel probability functions and its relation to Shannon’s zero error capacity. The Annals of Mathematical Statistics?41(3) (1970)
    4. Ahlswede, R.: Elimination of correlation in random codes for arbitrarily varyingchannels. Z. Wahrscheinlichkeitstheorie Verw. Gebiete?44, 159-75 (1978) CrossRef
    5. Ahlswede, R.: Coloring Hypergraphs: a new approach to multi-user source coding-II. Journal of Combinatorics, Information & System Sciences?5(3), 220-68 (1980)
    6. Ahlswede, R., Bjelakovi?, I., Boche, H., N?tzel, J.: Quantum capacity under adversarial noise: arbitrarily varying quantum channels. Commun. Math. Phys. (in print), http://arxiv.org/abs/1010.0418
    7. Ahlswede, R., Blinovsky, V.: Classical capacity of classical-quantum arbitrarily varying channels. IEEE Trans. Inf. Theory?53(2), 526-33 (2007) CrossRef
    8. Bhatia, R.: Matrix Analysis. Springer (1997)
    9. Bjelakovi?, I., Boche, H.: Classical capacities of averaged and compound quantum channels. IEEE Trans. Inf. Theory?55(7), 3360-374 (2009) CrossRef
    10. Bjelakovi?, I., Boche, H., N?tzel, J.: Quantum capacity of a class of compound channels. Phys. Rev. A?78, 042331 (2008) CrossRef
    11. Bjelakovi?, I., Boche, H., N?tzel, J.: Entanglement transmission and generation under channel uncertainty: universal quantum channel coding. Commun. Math. Phys.?292, 55-7 (2009) CrossRef
    12. Choi, M.-D.: Completely positive linear maps on complex matrice. Linear Algebra and Its Applications?10, 285-90 (1975) CrossRef
    13. Christandl, M.: The structure or bipartite quantum states - insights from group theory and cryptography, Dissertation (2006), http://arxiv.org/abs/quant-ph/0604183v1
    14. Csiszár, I., K?rner, J.: Information Theory; Coding Theorems for Discrete Memoryless Systems. Akadémiai Kiadó, Budapest/Academic Press Inc., New York (1981)
    15. Datta, N., Dorlas, T.: Coding theorem for a class of quantum channels with long-term memory. J. Phys. A: Math. Gen.?40, 8147-164 (2007) CrossRef
    16. Datta, N., Hsieh, M.-H.: Universal coding for transmission of private information. J. Math. Phys.?51, 122202 (2010) CrossRef
    17. Duan, R., Severini, S., Winter, A.: Zero-error communication via quantum channels, non-commutative graphs and a quantum Lovász / θ function, arXiv:1002.2514v2
    18. Fannes, M.: A continuity property of the entropy density for spin lattice systems. Comm. Math. Phys.?31, 291-94 (1973) CrossRef
    19. Hayashi, M.: Optimal sequence of POVMs in the sense of Stein’s lemma in quantum hypothesis testing, arXiv: quant-ph/0107004
    20. Hayashi, M., Nagaoka, H.: General formulas for capacity of classical-quantum channels. IEEE Trans. Inf. Th.?49, 1753 (2003) CrossRef
    21. Hayashi, M.: Universal coding for classical-quantum channel. Comm. Math. Phys.?289, 1087-098 (2009) CrossRef
    22. Kiefer, J., Wolfowitz, J.: Channels with arbitrarily varying channel probability functions. Information and Control?5, 44-4 (1962) CrossRef
    23. Leung, D., Smith, G.: Continuity of quantum channel capacities. Commun. Math. Phys.?292, 201-15 (2009) CrossRef
    24. Milman, V.D., Schechtman, G.: Asymptotic theory of finite dimensional normed spaces. Lecture Notes in Mathematics, vol.?1200. Springer (1986)
    25. Ogawa, T., Hayashi, M.: A new proof of the direct part of Stein’s lemma in quantum hypothesis testing, arXiv:quant-ph/0110125 (2001)
    26. Ogawa, T., Nagaoka, H.: Strong converse to the quantum channel coding theorem. IEE Trans. Inf. Th.?45, 2486-489 (1999) CrossRef
    27. Shannon, C.E.: The zero error capacity of a noisy channel. IRE Trans. Information Theory?IT-2, 8-9 (1956) CrossRef
    28. Webster, R.: Convexity. Oxford University Press (1994)
    29. Winter, A.: Coding theorem and strong converse for quantum channels. IEEE Trans. Inf. Th.?45, 2481 (1999) CrossRef
    30. Wolf, M.M., Cirac, J.I.: Dividing quantum channels. Commun. Math. Phys.?279, 147-68 (2008) CrossRef
  • 作者单位:Igor Bjelakovi? (18)
    Holger Boche (18)
    Gisbert Jan?en (18)
    Janis N?tzel (18)

    18. Lehrstuhl für Theoretische Informationstechnik, Technische Universit?t München, 80290, München, Germany
  • ISSN:1611-3349
文摘
We consider compound as well as arbitrarily varying classical-quantum channel models. For classical-quantum compound channels, we give an elementary proof of the direct part of the coding theorem. A weak converse under average error criterion to this statement is also established. We use this result together with the robustification and elimination technique developed by Ahlswede in order to give an alternative proof of the direct part of the coding theorem for a finite classical-quantum arbitrarily varying channels with the criterion of success being average error probability. Moreover we provide a proof of the strong converse to the random coding capacity in this setting. The notion of symmetrizability for the maximal error probability is defined and it is shown to be both necessary and sufficient for the capacity for message transmission with maximal error probability criterion to equal zero. Finally, it is shown that the connection between zero-error capacity and certain arbitrarily varying channels is, just like in the case of quantum channels, only partially valid for classical-quantum channels.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700