Aromaticity and conformational flexibility of five-membered monoheterocycles: pyrrole-like and thiophene-like structures
详细信息    查看全文
  • 作者:Irina V. Omelchenko ; Oleg V. Shishkin ; Leonid Gorb…
  • 关键词:Aromaticity ; Five ; membered heterocycles ; Aromaticity indices ; Aromatic ring flexibility
  • 刊名:Structural Chemistry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:27
  • 期:1
  • 页码:101-109
  • 全文大小:678 KB
  • 参考文献:1.Pozharskii AF, Soldatenkov AT, Katritzky AR (2011) Heterocycles in life and society: an introduction to heterocyclic chemistry. Biochem Appl. doi:10.​1002/​9781119998372.​fmatter
    2.Balaban AT, Oniciu DC, Katritzky AR (2004) Aromaticity as a cornerstone of heterocyclic chemistry. Chem Rev 104:2777–2812. doi:10.​1021/​cr0306790 CrossRef
    3.Simkin BY, Minkin VI, Glukhovtsev MN (1993) The concept of aromaticity in heterocyclic chemistry. Adv Heterocycl Chem 56:303–428CrossRef
    4.Bird CW (1997) Absolute hardness as a convenient criterion of heteroaromaticity. Tetrahedron 53:3319–3324. doi:10.​1016/​S0040-4020(97)00041-0 CrossRef
    5.Bird CW (1992) Heteroaromaticity, 5, a unified aromaticity index. Tetrahedron 48:335–340. doi:10.​1016/​S0040-4020(01)88145-X CrossRef
    6.Fallah-Bagher-Shaidaei H, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2006) Which NICS aromaticity index for planar pi rings is best? Org Lett 8:863–866. doi:10.​1021/​ol0529546 CrossRef
    7.Kotelevskii SI, Prezhdo OV (2001) Aromaticity indices revisited: refinement and application to certain five-membered ring heterocycles. Tetrahedron 57:5715–5729. doi:10.​1016/​S0040-4020(01)00485-9 CrossRef
    8.Katritzky AR, Barczynski P, Musumarra G, Pisano D, Szafran M (1989) Aromaticity as a quantitative concept. 1. A statistical demonstration of the orthogonality of classical and magnetic aromaticity in five- and six-membered heterocycles. J Am Chem Soc 111:7–15. doi:10.​1021/​ja00183a002 CrossRef
    9.Schleyer PvR, Jiao H, Goldfuss B, Freeman PK (1995) Aromaticity and antiaromaticity in five-membered C4H4X ring systems:“classical” and “magnetic” concepts may not be “orthogonal”. Angew Chem Int Ed Engl 34:337–340. doi:10.​1002/​anie.​199503371 CrossRef
    10.Nyulászi L, Várnai P, Veszprémi T (1995) About the aromaticity of five-membered heterocycles. J Mol Struct (Thoechem) 358:55–61. doi:10.​1016/​0166-1280(95)04338-1 CrossRef
    11.Katritzky AR, Karelson M, Sild S, Krygowski TM, Jug K (1998) Aromaticity as a quantitative concept. 7. Aromaticity reaffirmed as a multidimensional characteristic. J Org Chem 63:5228–5231. doi:10.​1021/​jo970939b CrossRef
    12.Cyrański MK, Krygowski TM, Katritzky AR, Schleyer PvR (2002) To what extent can aromaticity be defined uniquely? J Org Chem 67:1333–1338. doi:10.​1021/​jo016255s CrossRef
    13.Cyrański MK, Schleyer PvR, Krygowski TM, Jiao H, Hohlneicher G (2003) Facts and artifacts about aromatic stability estimation. Tetrahedron 59:1657–1665. doi:10.​1016/​S0040-4020(03)00137-6 CrossRef
    14.Alonso M, Herradón B (2010) A universal scale of aromaticity for pi-organic compounds. J Comput Chem 31:917–928. doi:10.​1002/​jcc.​21377
    15.Katritzky AR, Pozharskii AF (2010) Handbook of heterocyclic chemistry. In: Handbook of heterocyclic chemistry, 2nd ed. Elsevier, Oxford, pp 1–138, 239–472
    16.Omelchenko IV, Shishkin OV, Gorb L, Leszczynski J, Fias S, Bultinck P (2011) Aromaticity in heterocyclic analogues of benzene: comprehensive analysis of structural aspects, electron delocalization and magnetic characteristics. Phys Chem Chem Phys 13:20536–20548. doi:10.​1039/​c1cp20905a CrossRef
    17.Nyulászi L (1995) Effects of substituents on the aromatization of phosphole. J Phys Chem 99:586–591. doi:10.​1021/​j100002a021 CrossRef
    18.Nyulászi L (2000) Aromatic compounds with planar tricoordinate phosphorus. Tetrahedron 56:79–84. doi:10.​1016/​S0040-4020(99)00775-9 CrossRef
    19.Nyulászi L (2001) Aromaticity of phosphorus heterocycles. Chem Rev 101:1229–1246. doi:10.​1021/​cr990321x CrossRef
    20.Nyulászi L, Benkő Z (2009) Aromatic phosphorus heterocycles. Top Heterocycl Chem 19:27–81. doi:10.​1007/​978-3-540-68343-8_​2 CrossRef
    21.Pelzer S, Wichmann K, Wesendrup R, Schwerdtfeger P (2002) Trends in inversion barriers IV. The group 15 analogous of pyrrole. J Phys Chem A 106:6387–6394. doi:10.​1021/​jp0203494 CrossRef
    22.Dransfeld A, Nyulászi L, Schleyer PvR (1998) The aromaticity of polyphosphaphospholes decreases with the pyramidality of the tricoordinate phosphorus. Inorg Chem 37:4413–4420. doi:10.​1021/​ic971385y CrossRef
    23.Apeloig Y, Karni M (2009) Theoretical aspects and quantum mechanical calculations of silaaromatic compounds. PATAI’S Chem Funct Groups. doi:10.​1002/​9780470682531
    24.Goldfuss B, Schleyer PvR (1995) The Silolyl anion C4H4SiH-is aromatic and the lithium silolide C4H4SiHLi even more so. Organometallics 14:1553–1555. doi:10.​1021/​om00004a004 CrossRef
    25.Goldfuss B, Schleyer PvR, Hampel F (1996) Aromaticity in silole dianions: structural, energetic, and magnetic aspects. Organometallics 15:1755–1757. doi:10.​1021/​om9503306 CrossRef
    26.Modelli A, Hajgató B, Nixon JF, Nyulászi L (2004) Anionic states of six-membered aromatic phosphorus heterocycles as studied by electron transmission spectroscopy and ab initio methods. J Phys Chem A 108:7440–7447. doi:10.​1021/​jp0480596 CrossRef
    27.Krygowski TM, Szatylowicz H, Stasyuk OA, Dominikowska J, Palusiak M (2014) Aromaticity from the viewpoint of molecular geometry: application to planar systems. Chem Rev 114:6383–6422. doi:10.​1021/​cr400252h CrossRef
    28.Glukhovtsev MN, Dransfeld A, Schleyer PvR (1996) Why pentaphosphole, P 5 H, Is planar in contrast to phosphole, (CH) 4 PH. J Phys Chem 100:13447–13454. doi:10.​1021/​jp9600827 CrossRef
    29.Lee VY, Sekiguchi A (2010) Heavy Analogs of Aromatic Compounds. Organometallic compounds of low-coordinate Si, Ge, Sn and Pb. doi:10.​1002/​9780470669266
    30.Lee VY, Takanashi K, Kato R, Matsuno T, Ichinohe M, Sekiguchi A (2007) Heavy analogues of the 6π-electron anionic ring systems: cyclopentadienide ion and cyclobutadiene dianion. J Organomet Chem 692:2800–2810. doi:10.​1016/​j.​jorganchem.​2007.​01.​011 CrossRef
    31.Młochowski J, Giurg M (2009) New trends in chemistry and application of aromatic and related selenaheterocycles. Top Heterocycl Chem 19:288–340. doi:10.​1007/​7081_​2008_​7 CrossRef
    32.Goldfuss B, Schleyer PvR (1997) Aromaticity in group 14 metalloles: structural, energetic, and magnetic criteria. Organometallics 16:1543–1552. doi:10.​1021/​om960994v CrossRef
    33.Lee VY, Sekiguchi A, Ichinohe M, Fukaya N (2000) Stable aromatic compounds containing heavier Group 14 elements. J Organomet Chem 611:228–235. doi:10.​1016/​S0022-328X(00)00438-1 CrossRef
    34.Shishkin OV, Pichugin KY, Gorb L, Leszczynski J (2002) Structural non-rigidity of six-membered aromatic rings. J Mol Struct 616:159–166. doi:10.​1016/​S0022-2860(02)00328-9 CrossRef
    35.Borbulevych OY, Shishkin OV (1998) Conformational flexibility of antiaromatic 1,4 heterocyclic analogues of 1,4-cyclohexadiene. J Mol Struct 446:11–14. doi:10.​1016/​S0022-2860(97)00307-4 CrossRef
    36.Omelchenko IV, Shishkin OV, Gorb L, Hill FC, Leszczynski J (2013) Substituent effects and aromaticity of six-membered heterocycles. Struct Chem 24:725–733. doi:10.​1007/​s11224-012-0124-x CrossRef
    37.Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622. doi:10.​1103/​PhysRev.​46.​618 CrossRef
    38.Kendall RA, Dunning TH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796. doi:10.​1063/​1.​462569 CrossRef
    39.Minkin VI, Glukhovtsev MN, Simkin BY (1994) Aromaticity and antiaromaticity: electronic and structural aspects. Wiley, New York, pp 1–313
    40.Cyrański MK (2005) Energetic aspects of cyclic pi-electron delocalization: evaluation of the methods of estimating aromatic stabilization energies. Chem Rev 105:3773–3811. doi:10.​1021/​cr0300845 CrossRef
    41.Wiberg KB (1968) Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24:1083–1096. doi:10.​1016/​0040-4020(68)88057-3 CrossRef
    42.Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102:7211–7218. doi:10.​1021/​ja00544a007 CrossRef
    43.Shishkin OV, Omelchenko IV, Krasovska MV, Zubatyuk RI, Gorb L, Leszczynski J (2006) Aromaticity of monosubstituted derivatives of benzene. The application of out-of-plane ring deformation energy for a quantitative description of aromaticity. J Mol Struct 791:158–164. doi:10.​1016/​j.​molstruc.​2006.​01.​019 CrossRef
    44.Shishkin OV (1995) Conformational flexibility of dihydropyrimidinone and tetrahydropyrimidine-2,4-dione rings in DNA bases. J Chem Soc Chem Commun. doi:10.​1039/​c39950001539
    45.Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01
    46.Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) NBO 5.0
    47.Jenneskens LW, Louwen JN, De Wolf WH, Bickelhaupt F (1990) [4]Paracyclophane: MNDO and STO-3G molecular structure and strain energy. J Phys Org Chem 3:295–300. doi:10.​1002/​poc.​610030505 CrossRef
    48.Jenneskens LW, De Kanter FJJ, Kraakman PA, Turkenburg LAM, Koolhaas WE, de Wolf WH, Bickelhaupt F, Tobe Y, Kakiuchi K, Odaira Y (1985) [5]Paracyclophane. J Am Chem Soc 107:3716–3717. doi:10.​1021/​ja00298a051 CrossRef
    49.Jenneskens LW, Havenith RW, Soncini A, Fowler PW (2011) Aromaticity of strongly bent benzene rings: persistence of a diatropic ring current and its shielding cone in [5]paracyclophane. Phys Chem Chem Phys 13:16861–16866. doi:10.​1039/​c1cp21950b CrossRef
    50.Bodwell GJ, Miller DO, Vermeij RJ (2001) Nonplanar aromatic compounds. 6. [2]Paracyclo[2](2,7)pyrenophane. A novel strained cyclophane and a first step on the road to a “Vögtle” Belt. Org Lett 3:2093–2096. doi:10.​1021/​ol016053i CrossRef
    51.Bodwell GJ, Bridson JN, Cyrański MK, Kennedy JWJ, Krygowski TM, Mannion MR, Miller DO (2003) Nonplanar aromatic compounds. 8. Synthesis, crystal structures, and aromaticity investigations of the 1, n-dioxa[n](2,7)pyrenophanes. How does bending affect the cyclic pi-electron delocalization of the pyrene system? J Organ Chem 68:2089–2098. doi:10.​1021/​jo0206059 CrossRef
    52.Omelchenko IV, Shishkin OV, Gorb L, Hill FC, Leszczynski J (2012) Properties, aromaticity, and substituents effects in poly nitro- and amino-substituted benzenes. Struct Chem 23:1585–1597. doi:10.​1007/​s11224-012-9971-8 CrossRef
  • 作者单位:Irina V. Omelchenko (1)
    Oleg V. Shishkin (1) (2)
    Leonid Gorb (3)
    Jerzy Leszczynski (4) (5)

    1. SSI ‘Institute for Single Crystals’, National Academy of Sciences of Ukraine, 60 Lenin Ave., Kharkiv, 61001, Ukraine
    2. V.N.Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61077, Ukraine
    3. Badger Technical Services, LLC, Vicksburg, MS, USA
    4. US Army ERDC, 3532 Manor Dr, Vicksburg, MS, 39180, USA
    5. Department of Chemistry and Biochemistry, Interdisciplinary Center for Nanotoxicity, Jackson State University, P.O. Box 17910, 1325 Lynch Street, Jackson, MS, 39217, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Computer Applications in Chemistry
    Physical Chemistry
    Theoretical and Computational Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1572-9001
文摘
Aromaticity and conformational flexibility of the series of five-membered monoheterocycles with group 14–16 heteroatoms, having one or two lone pairs, were studied with ab initio methods using NICS, ASE and I 5 indices. For non-planar molecules like phosphole, aromaticity of their planar transition states was also studied, and a special modification of ASE index was proposed to that end. It was found that the presence of two lone pairs is generally preferable for aromaticity of all heterocycles except CPD and silolyl dianions. Heterocycles with group 16 heteroatoms have consistently lower aromaticity compared to other groups. A lot of structures should be classified as moderate aromatic and non-aromatic. Energies of out-of-plane deformation do not correlate with other indices studied, but reveal the same qualitative trends. Generally, aromaticity of five-membered monoheterocycles depends strongly on both heteroatom type and number of lone pairs on it. Keywords Aromaticity Five-membered heterocycles Aromaticity indices Aromatic ring flexibility

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700