Metal–metal bonding and aromaticity in [M2(NHCHNH)3]2 (μ-E)2 (E᾿ O, S; M᾿ Nb, Mo, Tc, Ru, Rh)
详细信息    查看全文
  • 作者:Xiuli Yan ; Lingpeng Meng ; Zheng Sun ; Xiaoyan Li
  • 关键词:Metal–metal bond ; Aromaticity ; Topological analysis of electron density
  • 刊名:Journal of Molecular Modeling
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:22
  • 期:2
  • 全文大小:818 KB
  • 参考文献:1.Cotton FA, Curtis NF, Harris CB, Johnson BFG, Lippard SJ, Mague JT, Robinson WR, Wood JS (1964) Mononuclear and polynuclear chemistry of rhenium (III): its pronounced homophilicity. Science 145:1305–1307CrossRef
    2.Cotton FA, Curtis NF, Johnson BFG, Robinson WR (1965) Compounds containing dirheniurm (III) octahalide anions. Inorg Chem 4:326–330CrossRef
    3.Cotton FA, Harris CB (1965) The crystal and molecular structure of dipotassium octachlorodirhenate(III) dihydrate, K2[Re2Cl8] · 2H2O. Inorg Chem 4:330–333CrossRef
    4.Cotton FA (1965) Metal-metal bonding in [Re2X8]2− ions and other metal atom clusters. Inorg Chem 4:334–336CrossRef
    5.Cotton FA (1983) Multiple metal-metal bonds. J Chem Educ 60:713–720CrossRef
    6.Krogman JP, Thomas CM (2014) Metal-metal multiple bonding in C3-symmetric bimetallic complexes of the first row transition metals. Chem Commun 50:5115–5127CrossRef
    7.Based on a 2013 search of the Cambridge Structural Database.
    8.Carrasco M, Mendoza I, Faust M, Lopez-Serrano J, Peloso R, Rodriguez A, Alvarez E, Maya C, Power PP, Carmona E (2014) Terphenyl complexes of molybdenum and tungsten with quadruple metal-metal bonds and bridging carboxylate ligands. J Am Chem Soc 136:9173–9180CrossRef
    9.Cotton FA, Murillo CA, Walton RA (2005) Multiple bonds between metal atoms, 3rd edn. Springer, BerlinCrossRef
    10.Collman JP, Boulatov R (2002) Heterodinuclear transition-metal complexes with multiple metal-metal bonds. Angew Chem Int Ed 41:3948–3961CrossRef
    11.Cotton FA, Daniels LM, Guimet I, Henning RW, Jordan GT, Lin C, Murillo CA, Schultz AJ (1998) Compounds with two metal−metal multiple bonds: New ways of making doublets into cyclic quartets. J Am Chem Soc 120:12531–12538CrossRef
    12.Cotton FA, Daniels LM, Jordan GT IV, Lin C, Murillo CA (1998) Tetranuclear complexes containing quadruply bonded dimolybdenum units joined by μ-hydride ions. J Am Chem Soc 120:3398–3401CrossRef
    13.Cotton FA, Hillard EA, Murillo CA (2002) The first dirhodium tetracarboxylate molecule without axial ligation: new insight into the electronic structures of molecules with importance in catalysis and other reactions. J Am Chem Soc 124:5658–5660CrossRef
    14.Chisholm MH (2007) Metal to metal multiple bonds in ordered assemblies. Proc Natl Acad Sci USA 104:2563–2570CrossRef
    15.Chisholm MH (2013) Mixed valency and metal–metal quadruple bonds. Coord Chem Rev 257:1576–1583CrossRef
    16.Chisholm MH (2008) Mixed valence complexes involving MM quadruple bonds (M = Mo or W). Philos Trans R Soc A 366:101–112CrossRef
    17.Hicks J, Ring SP, Patmore NJ (2012) Tuning the electronic structure of Mo-Mo quadruple bonds by N for O for S substitution. Dalton Trans 41:6641–6650CrossRef
    18.Wilkinson LA, McNeill L, Meijer AJ, Patmore NJ (2013) Mixed valency in hydrogen bonded ‘dimers of dimers’. J Am Chem Soc 135:1723–1726CrossRef
    19.Wilkinson LA, McNeill L, Scattergood PA, Patmore NJ (2013) Hydrogen bonding and electron transfer between dimetal paddlewheel compounds containing pendant 2-pyridone functional groups. Inorg Chem 52:9683–9691CrossRef
    20.Merino G, Donald KJ, D’Acchioli JS, Hoffmann R (2007) The many ways to have a quintuple bond. J Am Chem Soc 129:15295–15302CrossRef
    21.Fang W, He Q, Tan ZF, Liu CY, Lu X, Murillo CA (2011) Experimental and theoretical evidence of aromatic behavior in heterobenzene-like molecules with metal-metal multiple bonds. Chem Eur J 17:10288–10296CrossRef
    22.Tan ZF, Liu CY, Li Z, Meng M, Weng NS (2012) Abnormally long-range diamagnetic anisotropy induced by cyclic d(δ)-p(π) π conjugation within a Six-membered dimolybdenum /chalcogen ring. Inorg Chem 51:2212–2221CrossRef
    23.Elliott GP, Roper WR, Waters JM (1982) Metallacyclohexatrienes or ‘metallabenzenes.’ Synthesis of osmabenzene derivatives and X-ray crystal structure of [Os(CSCHCHCHCH)(CO)(PPh3)2]. J Chem Soc Chem Commun 1982:811–813
    24.Bleeke JR (2001) Metallabenzenes. Chem Rev 101:1205–1227CrossRef
    25.Fernandez I, Frenking G, Merino G (2015) Aromaticity of metallabenzenes and related compounds. Chem Soc Rev 44:6452–6463. doi:10.​1039/​C5CS00004A
    26.Lin R, Lee KH, Poon KC, Sung HH, Williams ID, Lin Z, Jia G (2014) Synthesis of rhenabenzenes from the reactions of rhenacyclobutadienes with ethoxyethyne. Chem Eur J 20:14885–14899CrossRef
    27.Cotton FA, Li Z, Murillo CA, Wang X, Yu R, Zhao Q (2007) Crystal-to-crystal oxidative deprotonation of a Di(μ-hydroxo) to a Di(μ-oxo) dimer of dimolybdenum units. Inorg Chem 46:3245–3250CrossRef
    28.Cheng T, Meng M, Lei H, Liu CY (2014) Perturbation of the charge density between two bridged Mo2 centers: the remote substituent effects. Inorg Chem 53:9213–9221CrossRef
    29.Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford
    30.Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403CrossRef
    31.Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371:683–686CrossRef
    32.Savin A, Nesper R, Wengert S, Fässler TE (1997) ELF: the electron localization function. Angew Chem Int Ed Engl 36:1808–1832CrossRef
    33.Silvi B (2002) The synaptic order: a key concept to understand multicenter bonding. J Mol Struct 614:3–10CrossRef
    34.Lee C, Yang W, Parr RG (1988) Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRef
    35.Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRef
    36.Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford
    37.Popelier P (2000) Atoms in molecules—an introduction. UMIST, Manchester
    38.Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules. In: From solid state to DNA and drug design. Wiley-VCH, Weinheim
    39.Keith TA (2012) AIMALL, 13.02.26. Available at: http://​aim.​tkgristmill.​com
    40.Feixas F, Matito E, Duran M, Solà M, Silvi B (2010) Electron localization function at the correlated level: a natural orbital formulation. J Chem Theory Comput 6:2736–2742CrossRef
    41.Noury S, Krokidis X, Fuster F, Silvi B (1999) Computational tools for the electron localization function topological analysis. Comput Chem 23:597–604CrossRef
    42.Matito E, Silvi B, Duran M, Solà M (2006) Electron localization function at the correlated level. J Chem Phys 125:24301CrossRef
    43.Flükiger P, Lüthi HP, Portmann S, Weber J (2000) MOLEKEL 4.0. J. Swiss Center for Scientific Computing, Manno
    44.Bader RF (2010) Definition of molecular structure: by choice or by appeal to observation? J Phys Chem A 114:7431–7444CrossRef
    45.Haaland A, Shorokhov DJ, Tverdova NV (2004) Topological analysis of electron densities:is the presence of an atomic interaction line in an equilibrium geometry a sufficient condition for the existence of a chemical bond? Chem Eur J 10:4416–4421CrossRef
    46.Krapp A, Frenking G (2007) Is this a chemical bond? A theoretical study of Ng2@C60 (Ng = He, Ne, Ar, Kr, Xe). Chem Eur J 13:8256–8270CrossRef
    47.Poater J, Visser R, Sola M, Bickelhaupt FM (2007) Polycyclic benzenoids: why kinked is more stable than straight. J Org Chem 72:1134–1142CrossRef
    48.Cerpa E, Krapp A, Vela A, Merino G (2008) The implications of symmetry of the external potential on bond paths. Chem Eur J 14:10232–10234CrossRef
    49.Cerpa E, Krapp A, Flores-Moreno R, Donald KJ, Merino G (2009) Influence of endohedral confinement on the electronic interaction between He atoms: a He2@C20H20 case study. Chem Eur J 15:1985–1990CrossRef
    50.Bianchi R, Gervasio G, Marabello D (2000) Experimental electron density analysis of Mn2(CO)10: metal-metal and metal-ligand bond characterization. Inorg Chem 39:2360–2366CrossRef
    51.Cremer D, Kraka E (1984) Chemical bonds without bonding electron density—does the difference electron-density analysis suffice for a description of the chemical bond? Angew Chem Int Ed Engl 23:627–628CrossRef
    52.Llusar R, Beltrán A, Andrés J, Fuster F, Silvi B (2001) Topological analysis of multiple metal−metal bonds in dimers of the M2(formamidinate)4 type with M = Nb, Mo, Tc, Ru, Rh, and Pd. J Phys Chem A 105:9460–9466CrossRef
    53.Kar T, Ángyán JG, Sannigrahi AB (2000) Comparison of ab initio Hartree-Fock and Kohn-Sham orbitals in the calculation of atomic charge, bond index, and valence. J Phys Chem A 104:9953–9963
    54.Firme CL, Antunes OAC, Esteves PM (2009) Relation between bond order and delocalization index of QTAIM. Chem Phys Lett 468:129–133CrossRef
    55.Silvi B, Gatti C (2000) Direct space representation of the metallic bond. J Phys Chem A 104:947–953CrossRef
    56.Krygowski TM, Cyranski MK (2001) Structural aspects of aromaticity. Chem Rev 101:1385–1419CrossRef
    57.Krygowski TM, Cyrañski MK, Czarnocki Z, Häfelinger G, Katritzky AR (2000) Aromaticity: a theoretical concept of immense practical importance. Tetrahedron 56:1783–1796, and references thereinCrossRef
    58.De Proft F, Geerlings P (2001) Conceptual and computational DFT in the study of aromaticity. Chem Rev 101:1451–1464CrossRef
    59.Schleyer PR, Maerker C, Dransfeld A, Jiao H, Hommes NJRE (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318CrossRef
    60.Schleyer PR, Jiao H, Hommes NJRE, Malkin VG, Malkina OL (1997) An evaluation of the aromaticity of inorganic rings: refined evidence from magnetic properties. J Am Chem Soc 119:12669–12670CrossRef
    61.Heine T, Schleyer PR, Corminboeuf C, Seifert G, Reviakine R, Weber J (2003) Analysis of aromatic delocalization: individual molecular orbital contributions to nucleus-independent chemical shifts. J Phys Chem A 107:6470–6475CrossRef
    62.Stanger A (2006) Nucleus-Independent Chemical Shifts (NICS): distance dependence and revised criteria for aromaticity and antiaromaticity. J Org Chem 71:883–893CrossRef
    63.Merino G, Heine T, Seifert G (2004) The induced magnetic field in cyclic molecules. Chem Eur J 10:4367–4371CrossRef
    64.Heine T, Islas R, Merino G (2007) σ and π contributions to the induced magnetic field: indicators for the mobility of electrons in molecules. J Comput Chem 28:302–309CrossRef
    65.Islas R, Martínez-Guajardo G, Jiménez-Halla JOC, Solà M, Merino G (2010) Not all that Has a negative NICS is aromatic: the case of the H-bonded cyclic trimer of HF. J Chem Theory Comput 6:1131–1135CrossRef
    66.Islas R, Heine T, Merino G (2012) The induced magnetic field. Acc Chem Res 45:215–228CrossRef
    67.Torres JJ, Islas R, Osorio E, Harrison JG, Tiznado W, Merino G (2013) Is Al2Cl6 aromatic? cautions in superficial NICS interpretation. J Phys Chem A 117:5529–5533CrossRef
    68.Fallah-Bagher-Shaidaei H, Wannere CS, Corminboeuf C, Puchta R, Schleyer P (2006) Which NICS aromaticity index for plana π rings is best? Org Lett 8:863–866CrossRef
  • 作者单位:Xiuli Yan (1) (2)
    Lingpeng Meng (1) (2)
    Zheng Sun (1) (2)
    Xiaoyan Li (1) (2)

    1. College of Chemistry and Material Science, Hebei Normal University, Road East of 2nd Ring South, Shijiazhuang, 050024, China
    2. Key Laboratory of Inorganic Nano-Materials of Hebei Province, Shijiazhuang, 050024, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Computer Applications in Chemistry
    Biomedicine
    Molecular Medicine
    Health Informatics and Administration
    Life Sciences
    Computer Application in Life Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:0948-5023
文摘
The nature of M–M bonding and aromaticity of [M2(NHCHNH)3]2(μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh) was investigated using atoms in molecules (AIM) theory, electron localization function (ELF), natural bond orbital (NBO) and molecular orbital analysis. These analyses led to the following main conclusions: in [M2(NHCHNH)3]2(μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh), the Nb–Nb, Ru–Ru, and Rh–Rh bonds belong to “metallic” bonds, whereas Mo–Mo and Tc–Tc drifted toward the “dative” side; all these bonds are partially covalent in character. The Nb–Nb, Mo–Mo, and Tc–Tc bonds are stronger than Ru–Ru and Rh–Rh bonds. The M–M bonds in [M2(NHCHNH)3]2(μ-S)2 are stronger than those in [M2(NHCHNH)3]2(μ-O)2 for M = Nb, Mo, Tc, and Ru. The NICS(1)ZZ values show that all of the studied molecules, except [Ru2(NHCHNH)3]2(μ-O)2, are aromaticity molecules. O-bridged compounds have more aromaticity than S-bridged compounds.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700