Fern-synthesized nanoparticles in the fight against malaria: LC/MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanoparticles with high mosquitocidal and antiplasmodial activity
详细信息    查看全文
  • 作者:Chellasamy Panneerselvam ; Kadarkarai Murugan ; Mathath Roni…
  • 关键词:Anophelinae ; Antioxidant ; Mosquito ; borne diseases ; Nanosynthesis ; Nanotechnology ; Smoke toxicity ; Longevity ; Fecundity
  • 刊名:Parasitology Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:115
  • 期:3
  • 页码:997-1013
  • 全文大小:1,189 KB
  • 参考文献:Abirami D, Murugan K (2011) HPTLC quantification of flavonoids, larvicidal and smoke repellent activities of Cassia occidentalis L. (Caesalpiniaceae) against malarial vectore Anopheles stephensi Lis (Diptera: Culicidae). J Phytol 3:60–72
    Adams Y, Smith SL, Schwartz-Albiez R, Andrews KT (2005) Carrageenans inhibit the in vitro growth of Plasmodium falciparum and cytoadhesion to CD36. Parasitol Res 97:290–294PubMed CrossRef
    Ali DM, Sasikala M, Gunasekaran M, Thajuddin N (2011) Biosynthesis and characterization of silver nanoparticles using marine cyanobacterium, Oscillatoria willei. Dig J Nanomater Biostruct 6:385–390
    Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472PubMed CrossRef
    Amer A, Mehlhorn H (2006b) Persistency of larvicidal effects of plant oil extracts under different storage conditions. Parasitol Res 99:473–477PubMed CrossRef
    Amer A, Mehlhorn H (2006c) Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99:478–490PubMed CrossRef
    Amer A, Mehlhorn H (2006d) The sensilla of Aedes and Anopheles mosquitoes and their importance in repellency. Parasitol Res 99:491–499PubMed CrossRef
    Ankanna S, Prasad TNVKV, Elumalai EK, Savithramma N (2010) Production of biogenic silver nanoparticles using Boswellia ovalifoliolata stem bark. Dig J Nanomat Biostruct 5(2):369–372
    Arnason JT, Philogene BJR, Morand P (1989) Insecticides of plant origin. ACS Symp Ser No. 387. American Chemical Society, Washington, p 213CrossRef
    Arora R, Kaur M, Gill NS (2011) Antioxidant activity and pharmocological evaluation of Cucumis melo var. agrestis. Res J Phytochem 5(3):146–155CrossRef
    Bagavan A, Rahuman AA, Kaushik NK, Sahal D (2011) In vitro antimalarial activity of medicinal plant extracts against Plasmodium falciparum. Parasitol Res 108:15–22PubMed CrossRef
    Basavaraja S, Balaji DS, Arunkumar L, Rajasab AH, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus, Fusarium semitectum. Mater Res Bull 43:1164–1170CrossRef
    Becker K, Tilley L, Vennerstrom JL, Roberts D, Rorerson S, Ginsburg H (2004) Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions. Int J Parasitol 34:163–189PubMed CrossRef
    Benelli G (2015a) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114:2801–2805
    Benelli G (2015b) Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol Res 114:3201–3212PubMed CrossRef
    Benelli G (2016) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res. doi:10.​1007/​s00436-015-4800-9
    Benelli G, Murugan K, Panneerselvam C, Madhiyazhagan P, Conti B, Nicoletti M (2015) Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol Res 114:391–397PubMed CrossRef
    Bhattacharya D, Gupta RK (2005) Nanotechnology and potential of microorganisms. Crit Rev Biotechnol 25(4):199–204PubMed CrossRef
    Blois MS (1958) Antioxidants determination by the use of a stable free radical. Nature 4617:1199–1200CrossRef
    Chen NF, Chen CW, Zhang L (2013) Separation and structure elucidation of a new homoflavanol derivative from Pteridium aquilinum (L.) Kuhn. Nat Prod Res 27(19):1764–1769
    Cooper-Driver G (1976) Chemotaxonomy and phytochemical ecology of bracken. Bot J Linn Sot 73:35–46CrossRef
    David JP, Rey D, Pautou MP, Meyran JC (2000) Differential toxicity of leaf litter to dipteran larvae of mosquito developmental sites. J Invertebr Pathol 75:9–18PubMed CrossRef
    Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114:1519–29PubMed CrossRef
    Dubar F, Egan TJ, Pradines B, Kuter D, Ncokazi KK, Forge D et al (2011) The antimalarial ferroquine: role of the metal and intramolecular hydrogen bond in activity and resistance. ACS Chem Biol 6(3):275–87PubMed CrossRef
    Ehimwenma SO, Osagie AU (2007) Phytochemical screening and anti-anaemic effects of Jatropha tanjorensis leaf in protein malnourished rats. Plant Arch 7:509–516
    El Tahir A, Satti GM, Khalid SA (1999) Antiplasmodial activity of selected Sudanese medicinal plants with emphasis on Maytenus senegalensis (Lam.) Exell. J Ethnopharmacol 64(3):227–233PubMed CrossRef
    Fayaz AM, Balaji K, Girilal MYR, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 6:103–109CrossRef
    Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668PubMed CrossRef
    Finney DJ (1971) Probit analysis. Cambridge University, London, pp 68–78
    Franklin TJ, Snow GA, Barrettzee KJ, Nolan RD (1989) Biochemistry of antimicrobial action, 4th edn. Chapman and Hall, London, pp 73–135
    Girennavar B, Jayaprakasha GK, Jadegoud Y, Gowda GAN, Patil BS (2007) Radical scavenging and cytochrome P450 3A4 inhibitory activity of bergaptol and geranylcoumarin from grapefruit. Bioorg Med Chem 15:3684–3691PubMed CrossRef
    Gong P, Li H, He X, Wang K, Hu J, Tan W, Zhang S, Yang X (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnol 18:285604CrossRef
    Griffiths MJ, Ndungu F, Baird KL, Muller DPR, Marsh K, Charles RJ, Newton C (2001) Oxidative stress and erythrocyte damage in Kenyan children with severe Plasmodium falciparum malaria. Br J Haematol 113:486–491PubMed CrossRef
    Harborne JB, Harborne AJ (1998) Phytochemical methods: a guide to modern techniques of plant analysis. Kluwer Academic Publishers, London
    Haverkamp RG (2010) Ten years of nanoparticle research in Australia and New Zealand. Part Sci Technol 28:1–40CrossRef
    Josephrajkumar A, Subrahmanyam B, Devakumar C (2000) Growth-regulatory activity of silver fern extract on the cotton bollworm, Helicoverpa armigera (Hübner). Int J Tropic Insect Sci 20(04):295–302CrossRef
    Kamaraj C, Kaushik NK, Rahuman AA, Mohanakrishnan D, Bagavan A, Elango G, Zahir AA, Santhoshkumar T, Marimuthu S, Jayaseelan C, Kirthi AV, Rajakumar G, Velayutham K, Sahal D (2012) Antimalarial activities of medicinal plants traditionally used in the villages of Dharmapuri regions of South India. J Ethnopharmacol 141:796–802PubMed CrossRef
    Kardong D, Upadhyaya S, Saikia LR (2013) Screening of phytochemicals, antioxidant and antibacterial activity of crude extract of Pteridium aquilinum Kuhn. J Pharm Res 6:179–182
    Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K (2011) Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim Acta Part A: Mol Biomol Spectrosc 79:594–598CrossRef
    Kemp MM, Kumar A, Mousa S, Dyskin E, Yalcin M, Ajayan P, Linhardt RJ, Mousa SA (2009) Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties. Nanotechnol 20:455104CrossRef
    Kirby GC, O’Neil MJ, Philipson JD, Warhurst DC (1989) In vivo studies on the mode of action of quassinoids with activity against chloroquine resistant Plasmodium falciparum. Biochem Pharmacol 38:4367–4374PubMed CrossRef
    Kovendan K, Murugan K, Vincent S, Barnard DR (2012) Studies on larvicidal and pupicidal activity of Leucas aspera Willd (Lamiaceae) and bacterial insecticide, Bacillus sphaericus against malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 110:195–203PubMed CrossRef
    Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Coll Surf B Biointe 76:50–56CrossRef
    Kumar A, Murugan K, Rejeeth C, Madhiyazhagan P, Barnard DR (2012) Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vector-Born Zoon Dis 12:262–268CrossRef
    Kumar AN, Murugan K, Madhiyazhagan P (2013) Integration of botanicals and microbials for management of crop and human pests. Parasitol Res 112:313–325CrossRef
    Madhiyazhagan P, Murugan K, Naresh Kumar A, Nataraj T, Dinesh D, Panneerselvam C, Subramaniam J, Mahesh Kumar P, Suresh U, Roni M, Nicoletti M, Alarfaj AA, Higuchi A, Munusamy MA, Benelli G (2015) Sargassum muticum-synthetized silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens. Parasitol Res. doi:10.​1007/​s00436-015-4671-0
    Magudapathy P, Gangopadhyay P, Panigrahi BK, Nair KGM, Dhara S (2001) Electrical transport studies of Ag nanoclusters embedded in glass matrix. Physica 299:142–146CrossRef
    Makowski R (1993) Effect of inoculum concentration, temperature, dew period, and plants growth stage on disease of round-leaved mallow and velvetleaf by Colletotrichum gloeosporioides f. sp. malvae. Ecol Epidemiol 83:1229–1234
    Mehlhorn H (2008) Encyclopedia of parasitology, 3rd edn. Springer, HeidelbergCrossRef
    Mehlhorn H, Al-Rasheid KA, Al-Quraishy S, Abdel-Ghaffar F (2012) Research and increase of expertise in arachno-entomology are urgently needed. Parasitol Res 110:259–265PubMed CrossRef
    Muller FL, Liu Y, Van Remmen H (2004) Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 279:49064–49073PubMed CrossRef
    Murugan K, Vahitha R, Baruah I, Das SC (2003) Integration of botanicals and microbial pesticides for the control of filarial vector, Culex quinquefasciatus. Ann Med Entomol 12:11–23
    Murugan K, Murugan P, Noortheen A (2007) Larvicidal and repellent potential of Albizzia amara Boivin and Ocimum basilicum Linn against dengue vector, Aedes aegypti Insecta: Diptera: Culicidae). Biores Technol 98:198–20CrossRef
    Murugan K, Benelli G, Ayyappan S, Dinesh D, Panneerselvam C, Nicoletti M, Hwang JS, Mahesh Kumar P, Subramaniam J, Suresh U (2015a) Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res 114:2243–53PubMed CrossRef
    Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P (2015b) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153:129–138PubMed CrossRef
    Murugan K, Aarthi N, Kovendan K, Panneerselvam C, Chandramohan B, Mahesh Kumar P, Amerasan D, Paulpandi M, Chandirasekar R, Dinesh D, Suresh U, Subramaniam J, Higuchi A, Alarfaj AA, Nicoletti M, Mehlhorn H, Benelli G (2015c) Mosquitocidal and antiplasmodial activity of Senna occidentalis (Cassiae) and Ocimum basilicum (Lamiaceae) from Maruthamalai hills against Anopheles stephensi and Plasmodium falciparum. Parasitol Res. doi:10.​1007/​s00436-015-4593-x
    Murugan K, Samidoss CM, Panneerselvam C, Higuchi A, Roni M, Suresh U, Chandramohan B, Subramaniam J, Madhiyazhagan P, Dinesh D, Rajaganesh R, Alarfaj AA, Nicoletti M, Kumar S, Wei H, Canale A, Mehlhorn H, Benelli G (2015d) Seaweed-synthesized silver nanoparticles: an eco-friendly tool in the fight against Plasmodium falciparum and its vector Anopheles stephensi? Parasitol Res 114:4087–4097PubMed CrossRef
    Murugan K, Dinesh D, Jenil Kumar P, Panneerselvam C, Subramaniam J, Madhiyazhagan P, Suresh U, Nicoletti M, Alarfaj AA, Munusamy MA, Higuchi A, Mehlhorn H, Benelli G (2015e) Datura metel-synthesized silver nanoparticles magnify predation of dragonfly nymphs against the malaria vector Anopheles stephensi. Parasitol Res. doi:10.​1007/​s00436-015-4710-x
    Murugan K, Aamina LM, Panneerselvam C, Dinesh D, Suresh U, Subramaniam J, Madhiyazhagan P, Hwang JS, Wang L, Nicoletti M, Benelli G (2015f) Aristolochia indica green-synthesized silver nanoparticles: a sustainable control tool against the malaria vector Anopheles stephensi? Res Vet Sci. doi:10.​1016/​j.​rvsc.​2015.​08.​001 PubMed
    Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO (2002) Biomimetic synthesis and patterning of silver nanoparticles. Nat Mater 1:169–172PubMed CrossRef
    Nethengwe MF, Opoku AR, Dludla PV, Madida KT, Shonhai A, Smith P, Singh M (2012) Larvicidal, antipyretic and antiplasmodial activity of some Zulu medicinal plants. J Med Plants Res 6(7):1255–1262CrossRef
    Nwiloh BI, Monago CC, Uwakwe AA (2014) Chemical composition of essential oil from the fiddleheads of Pteridium aquilinum L. Kuhn found in Ogoni. J Med Plant Res 8(1):77–80CrossRef
    Odoemena CSI, Sampson AE, Danladi B, Ajibesin KK (2002) Phytochemical study and nutritive potential of Afrofritomia sylevestris leaf. Nig J Nat Prod Med 6:42–44
    Olayiwola G, Iwalewa EO, Omobuwajo OR, Adebajo AC, Adeniyi AA, Verspohl EJ (2004) The antidiabetic potential of Jatropha tanjorensis leaves. Niger J Nat Prod Med 8:55–58
    Omoregie ES, Osagie AU (2007) Phytochemical screening and anti-anemic effect of Jatropha tanjorensis leaf in protein malnourished rats. Plant Arch 7:509–516
    Othman A, Ismail A, Ghani NA, Adenan I (2007) Antioxidant capacity and phenolic content of cocoa beans. Food Chem 100:1523–1530CrossRef
    Pal RS, Ariharasivakumar, Girhepunje GK, Upadhyay A (2009) In-vitro antioxidative activity of phenolic and flavonoid compounds extracted from seeds of Abrus precatorius. Int J Pharm Pharma Sci 1(2):136–140
    Panneerselvam C, Murugan K (2013) Adulticidal, repellent, and ovicidal properties of indigenous plant extracts against the malarial vector, Anopheles stephensi (Diptera: Culicidae). Parasitol Res 112:679–692PubMed CrossRef
    Panneerselvam C, Murugan K, Kovendan K, Mahesh Kumar P, Subramaniam J (2013a) Mosquito larvicidal and pupicidal activity of Euphorbia hirta Linn. (Family: Euphorbiaceae) and Bacillus sphaericus against Anopheles stephensi Liston (Diptera: Culicidae). Asian Pac J Trop Med 6:102–109PubMed CrossRef
    Panneerselvam C, Murugan K, Kovendan K, Mahesh Kumar P, Ponarulselvam S, Amerasan D, Subramaniam J, Hwang JS (2013b) Larvicidal efficacy of Catharanthus roseus Linn. Family: Apocynaceae) leaf extract and bacterial insecticide Bacillus thuringiensis against Anopheles stephensi Liston. Asian Pacific J Trop Med 847–853
    Patil CD, Patil SV, Borase HP, Salunke BK, Salunkhe RB (2012) Larvicidal avtivity of silver nanoparticles synthesised using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol Res 110:1815–1822PubMed CrossRef
    Pavela R (2015) Essential oils for the development of eco-friendly mos- quito larvicides: a review. Ind Crops Prod 76:174–187CrossRef
    Potter DM, Baird MS (2000) Carcinogenic effects of ptaquiloside in bracken fern and related compounds. Br J Cancer 83(7):914–920PubMed PubMedCentral CrossRef
    Rahuman AA, Gopalarkrishnan G, Saleem G, Arumrgam S, Himalayan B (2000) Effect of Feronia limonia on mosquito larvae. Fitoterapia 71:553–555PubMed CrossRef
    Raja K, Saravanakumar A, Vijayakumar R (2012) Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage. Spectrochim Acta A Mol Biomol Spectrosc 97:490–494PubMed CrossRef
    Rajakumar G, Rahuman AA, Chung IM, Vishnu Kirthi A, Marimuthu S, Anbarasan K (2015) Antiplasmodial activity of eco-friendly synthesized palladium nanoparticles using Eclipta prostrata extract against Plasmodium berghei in Swiss albino mice. Parasitol Res 114:1397–1406PubMed CrossRef
    Rajkumar S, Jebanesan A (2008) Bioactivity of flavonoid compounds from Poncirus trifoliata L. (Family: Rutaceae) against the dengue vector, Aedes aegypti L. (Diptera: Culicidae). Parasitol Res 104(1):19–25PubMed CrossRef
    Roni M, Murugan K, Panneerselvam C, Subramaniam J, Nicoletti M, Madhiyazhagan P, Dinesh D, Suresh U, Khater HF, Wei H, Canale A, Alarfaj AA, Munusamy MA, Higuchi A, Benelli G (2015) Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol Environ Saf. doi:10.​1016/​j.​ecoenv.​2015.​07.​005 PubMed
    Rueda LM (2008) Global diversity of mosquitoes (Insecta: Diptera: Culicidae) in freshwater. Dev Hydrobiol 595:477–487CrossRef
    Runyoro D, Ngassapa O, Vagionas K, Aligiannis N, Graikou K, Chinou I (2010) Chemical composition and antimicrobial activity of the essential oils of four Ocimum species growing in Tanzania. Food Chem 119:311–316CrossRef
    Sathyavathi R, Balamurali Krishna M, Venugopal Rao S, Saritha R, Narayana Rao D (2010) Biosynthesis of silver nanoparticles using Coriandrum Sativum leaf extract and their application in nonlinear optics. Adv Sci Lett 3:1–6CrossRef
    Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. Int J Sociol Food Agric 15(2):22–44
    Selvaraj P, John De Britto A, Sahayaraj K (2005) Phytoecdysone of Pteridium aquilinum (L) Kuhn (Dennstaedtiaceae) and its pesticidal property on two major pests. Arch Phytopath Plant Protec 38(2):99–105CrossRef
    Shaalan E, Canyon D, Faried MW, Abdel-Wahab H, Mansour A (2005) A review of botanical phytochemicals with mosquitocidal potential. Environ Int 31:1149–1166PubMed CrossRef
    Shankar S, Rai S, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502PubMed CrossRef
    Singh R, Shushni AM, Belkheir A (2011) Antibacterial and antioxidant activities of Mentha piperita L. Arabian J Chem 22:1–7
    Sinha S, Pan I, Chanda P, Sen SK (2009) Nanoparticles fabrication using ambient biological resources. J Appl Biosci 19:1113–1130
    Smilkstein M, Sriwilaijaroen N, Kelly JX, Wilairat P, Riscoe M (2004) Simple and inexpensive fluorescence-based technique for high through put antimalarial drug screening. Antimicrob Agents Chemother 48:1803–6PubMed PubMedCentral CrossRef
    Song YJ, Jang HK, Kim SB (2009) Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extract. Process Biochem 44:1133–1138CrossRef
    Stuart BH (2002) Polymer analysis. Wiley, United Kingdom
    Subbiah P, Tyagi BK (2002) Studies on Bacillus sphaericus toxicity-related resistance development and biology in the filariasis vector, Culex quinquefasciatus (Diptera: Culicidae) from South India. App Entomol Zool 37:365–371CrossRef
    Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Mahesh Kumar P, Dinesh D, Chandramohan B, Suresh U, Nicoletti M, Higuchi A, Hwang JS, Kumar S, Alarfaj AA, Munusamy MA, Messing RH (2015) Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach? Environ Sci Pollut Res. doi:10.​1007/​s11356-015-5253-5
    Sujitha V, Murugan K, Paulpandi M, Panneerselvam C, Suresh U, Roni M, Nicoletti M, Higuchi A, Madhiyazhagan P, Subramaniam J, Dinesh D, Vadivalagan C, Chandramohan B, Alarfaj AA, Munusamy MA, Barnard DR, Benelli G (2015) Green synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res 114:3315–3325PubMed CrossRef
    Sukumar K, Perich MJ, Booba LR (1991) Botanical derivatives in mosquito control: a review. J Am Mosq Control Assoc 7:210–37PubMed
    Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Mahesh Kumar P, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1551–1562PubMed CrossRef
    Susanto H, Feng Y, Ulbricht M (2009) Fouling behavior of aqueous solutions of polyphenolic compounds during ultrafiltration. J Food Eng 91:333–340CrossRef
    Thilagam M, Tamilselvi A, Chandrasekeran B, Rose C (2013) Phytosynthesis of silver nanoparticles using medicinal and dye yielding plant of Bixa orellana L. leaf extract. J Pharma Sci Innov 2:9–13CrossRef
    Tiwari DK, Behari J (2009) Biocidal nature of treatment of Ag-nanoparticle and ultrasonic irradiation in Escherichia coli dh5. Adv Biol Res 3(3-4):89–95
    Trager W, Jensen J (1976) Human malaria parasites in continuous culture. Science 193:673–675PubMed CrossRef
    Tsuda T, Watanabe M, Oshima K, Norinobu S, Choi SW, Kawakishi S (1994) Antioxidative activity of anthocyanin pigments cyaniding 3-0-β-D-glucoside and cyamidin. J Agricul Food Chem 42(11):2407–2410CrossRef
    USDA (2006) National Genetic Resources program. Germplasm Resour Inf Network (GRIN) 31:2948
    Vahitha R, Venkatachalam MR, Murugan K, Jebanesan A (2002) Larvicidal efficacy of Pavonia zeylanica L. Acacia ferruginea D.C. against Culex quinquefasciatus Say. Bioresour Technol 82:203–204PubMed CrossRef
    Vimaladevi S, Mahesh A, Dhayanithi BN, Karthikeyan N (2012) Mosquito larvicidal efficacy of phenolic acids of seaweed Chaetomorpha antennina (Bory) Kuetz. against Aedes aegypti. Biologia 67(1):212–216CrossRef
    Wang H, Wu S (2013) Preparation and antioxidant activity of Pteridium aquilinum-derived oligosaccharide. Int J Biol Macromol 61:33–5PubMed CrossRef
    WHO (2014) Malaria. Fact sheet N°94
    Xu H, Käll M (2002) Morphology effects on the optical properties of silver nanoparticles. J Nano Nanotech 4:254–259
    Zhou K, Yu L (2006) Total phenolic contents and antioxidant properties of commonly consumed vegetables grown in Colorado. LWT Food Sci Technol 39:1155–1162CrossRef
  • 作者单位:Chellasamy Panneerselvam (1)
    Kadarkarai Murugan (1)
    Mathath Roni (1)
    Al Thabiani Aziz (2)
    Udaiyan Suresh (1)
    Rajapandian Rajaganesh (1)
    Pari Madhiyazhagan (1)
    Jayapal Subramaniam (1)
    Devakumar Dinesh (1)
    Marcello Nicoletti (3)
    Akon Higuchi (4)
    Abdullah A. Alarfaj (5)
    Murugan A. Munusamy (5)
    Suresh Kumar (6)
    Nicolas Desneux (7)
    Giovanni Benelli (8)

    1. Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
    2. Faculty of Science, Department of Biology, University of Tabuk, Tabuk, 71491, Saudi Arabia
    3. Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
    4. Department of Chemical and Materials Engineering, National Central University, No. 300 Jhongli, Taoyuan, 32001, Taiwan
    5. Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
    6. Faculty of Medicine and Health Sciences, Department of Medical Microbiology and Parasitology, University Putra Malaysia, Seri Kembangan, Malaysia
    7. INRA (French National Institute for Agricultural Research), University of Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
    8. Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Medical Microbiology
    Microbiology
    Immunology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1955
文摘
Malaria remains a major public health problem due to the emergence and spread of Plasmodium falciparum strains resistant to chloroquine. There is an urgent need to investigate new and effective sources of antimalarial drugs. This research proposed a novel method of fern-mediated synthesis of silver nanoparticles (AgNP) using a cheap plant extract of Pteridium aquilinum, acting as a reducing and capping agent. AgNP were characterized by UV–vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). Phytochemical analysis of P. aquilinum leaf extract revealed the presence of phenols, alkaloids, tannins, flavonoids, proteins, carbohydrates, saponins, glycosides, steroids, and triterpenoids. LC/MS analysis identified at least 19 compounds, namely pterosin, hydroquinone, hydroxy-acetophenone, hydroxy-cinnamic acid, 5, 7-dihydroxy-4-methyl coumarin, trans-cinnamic acid, apiole, quercetin 3-glucoside, hydroxy-L-proline, hypaphorine, khellol glucoside, umbelliferose, violaxanthin, ergotamine tartrate, palmatine chloride, deacylgymnemic acid, methyl laurate, and palmitoyl acetate. In DPPH scavenging assays, the IC50 value of the P. aquilinum leaf extract was 10.04 μg/ml, while IC50 of BHT and rutin were 7.93 and 6.35 μg/ml. In mosquitocidal assays, LC50 of P. aquilinum leaf extract against Anopheles stephensi larvae and pupae were 220.44 ppm (larva I), 254.12 ppm (II), 302.32 ppm (III), 395.12 ppm (IV), and 502.20 ppm (pupa). LC50 of P. aquilinum-synthesized AgNP were 7.48 ppm (I), 10.68 ppm (II), 13.77 ppm (III), 18.45 ppm (IV), and 31.51 ppm (pupa). In the field, the application of P. aquilinum extract and AgNP (10 × LC50) led to 100 % larval reduction after 72 h. Both the P. aquilinum extract and AgNP reduced longevity and fecundity of An. stephensi adults. Smoke toxicity experiments conducted against An. stephensi adults showed that P. aquilinum leaf-, stem-, and root-based coils evoked mortality rates comparable to the permethrin-based positive control (57, 50, 41, and 49 %, respectively). Furthermore, the antiplasmodial activity of P. aquilinum leaf extract and green-synthesized AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of P. falciparum. IC50 of P. aquilinum were 62.04 μg/ml (CQ-s) and 71.16 μg/ml (CQ-r); P. aquilinum-synthesized AgNP achieved IC50 of 78.12 μg/ml (CQ-s) and 88.34 μg/ml (CQ-r). Overall, our results highlighted that fern-synthesized AgNP could be candidated as a new tool against chloroquine-resistant P. falciparum and different developmental instars of its primary vector An. stephensi. Further research on nanosynthesis routed by the LC/MS-identified constituents is ongoing.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700