Evaluating the carbon footprint of Chilean organic blueberry production
详细信息    查看全文
  • 作者:Hanna Cordes ; Alfredo Iriarte…
  • 关键词:Blueberry ; Carbon footprint ; Chile ; Life cycle assessment ; Fruit ; GHG emissions ; Land use change ; Organic agriculture
  • 刊名:The International Journal of Life Cycle Assessment
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:21
  • 期:3
  • 页码:281-292
  • 全文大小:478 KB
  • 参考文献:Achten W, Almeida J, Fobelets V, Bolle E, Mathijs E, Singh V, Tewari D, Verchot L, Muys B (2010) Life cycle assessment of Jatropha biodiesel as transportation fuel in rural India. Appl Energy 87:3652–3660CrossRef
    Beccali M, Cellura M, Iudicello M, Mistretta M (2009) Resource consumption and environmental impacts of the agrofood sector: life cycle assessment of Italian citrus-based products. Environ Manage 43:707–724CrossRef
    Bessou C, Basset-Mens C, Tran T, Benoist A (2013) LCA applied to perennial cropping systems: a review focused on the farm stage. Int J Life Cycle Assess 18:340–361CrossRef
    Bilalis D, Kamariari P, Karkanis A, Efthimiadou A, Zorpas A, Kakabouki I (2013) Energy inputs, output and productivity in organic and conventional maize and tomato production, under Mediterranean conditions. Not Bot Horti Agrobot Cluj-Napoca 41:190–194
    Bina S, Dowlatabadib H (2005) Consumer lifestyle approach to US energy use and the related CO2 emissions. Energ Policy 33:197–208CrossRef
    Blonk Consultants (2014) The direct land use change assessment tool. Gouda, The Netherlands, Available at: http://​blonkconsultants​.​nl/​en/​tools/​land-use-change-tool.​html
    Brazelton C (2013) World blueberry acreage & production. North American Blueberry Council Available at: http://​www.​blueberrieschile​.​cl/​paper/​paper62.​pdf
    Brito de Figueirêdo MC, Kroeze C, Potting J et al (2012) The carbon footprint of exported Brazilian yellow melón. J Clean Prod 47:404–414CrossRef
    BSI (2011) PAS 2050:2011. Specification for the assessment of life cycle greenhouse gas emissions of goods and services. British Standards Institution, London
    BSI (2012) PAS 2050-1:2012. Assessment of life cycle greenhouse gas emissions from horticultural products. British Standards Institution, London
    Cerutti A, Bagliani M, Beccaro G, Bounous G (2010) Application of ecological footprint analysis on nectarine production: methodological issues and results from a case study in Italy. J Clean Prod 18:771–776CrossRef
    Cerutti A, Bruun S, Beccaro G, Bounous G (2011) A review of studies applying environmental impact assessment methods on fruit production systems. J Environ Manage 92:2277–2286CrossRef
    Choo YM, Muhamad H, Hashim Z, Subramaniam V, Puah CW et al (2011) Determination of GHG contributions by subsystems in the oil palm supply chain using the LCA approach. Int J Life Cycle Assess 16:669–681CrossRef
    Dalgaard T, Halberg N, Porter JR (2001) A model for fossil energy use in Danish agriculture used to compare organic and conventional farming. Agric Ecosyst Environ 87:51–65CrossRef
    Comité de Arándanos (2013) Regiones productoras. Santiago, Chile. Available at: http://​www.​comitedearandano​s.​cl
    Ecoinvent Centre (2014) The ecoinvent database. Swiss Centre for Life Cycle Inventories. Available at http://​www.​ecoinvent.​org/​database/​database.​html
    EPLCA (2007) Carbon footprint - what it is and how to measure it. EPLCA (European Platform on Life Cycle Assessment), Joint Research Centre-Institute for Environment and Sustainability. Ispra, Italy
    FAO (2014a) Agriculture, forestry and other land use emissions by sources and removals by sinks. 1990–2011 analysis. In: Tubiello FN, Salvatore M, Cóndor Golec RD et al. (eds) Working Paper Series FAO. Rome, Italy
    FAO (2014b) FAOSTAT Database v. 2014. FAO Statistics Division. Available at http://​faostat3.​fao.​org/​home/​E
    Finkbeiner M (2009) Carbon footprinting—opportunities and threats. Int J Life Cycle Assess 14:91–94CrossRef
    Franchetti M, Apul D (2012) Carbon footprint analysis: concepts, methods, implementation, and case studies. CRC Press, FloridaCrossRef
    Fresh Fruit Portal (2014) International Special Edition. Blueberries 2014. Gutierres, ed, Santiago, Chile
    Frischknecht R, Jungbluth N, Althaus HJ, Doka G, Heck T, Hellweg S, Hischier R, Nemecek T, Rebitzer G, Spielmann M, Wernet G (2007) Overview and methodology. Ecoinvent report No. 1. Swiss Centre for Life Cycle Inventories, Dübendorf
    Gan Y, Liang C, Hamel C, Cutforth H, Wang H (2011) Strategies for reducing the carbon footprint of field crops for semiarid areas. A review. Agron Sustainable Dev 31:643–656CrossRef
    Garnett T (2006) Fruit and vegetables and greenhouse gas emissions: exploring the relationship. Working paper produced as part of the work of the Food Climate Research Network. Centre for Environmental Strategy, University of Surrey
    GHG Protocol (2011) Quantitative inventory uncertainty. In: World Resources Institute (WRI) and World Business Council for Sustainable Development (WBCSD) (eds) Product life cycle accounting and reporting standard. Greenhouse Gas Protocol. Available at http://​www.​ghgprotocol.​org/​standards/​product-standard
    Girgenti V, Peano C, Bounous M, Baudino C (2013) A life cycle assessment of non-renewable energy use and greenhouse gas emissions associated with blueberry and raspberry production in northern Italy. Sci Total Environ 458–460:414–418CrossRef
    Goodland R (1997) Environmental sustainability in agriculture: diet matters. Ecol Econ 23:189–200CrossRef
    Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R et al (2002) Handbook on life cycle assessment. Operational guide to the ISO standards. I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: scientific background. Kluwer Academic Publishers, Dordrecht, p 692
    Guzmán GI, Alonso AM (2008) A comparison of energy use in conventional and organic olive oil production in Spain. Agric Syst 98:167–176CrossRef
    Heller M, Keoleian G (2015) Greenhouse gas emission estimates of U.S. dietary choices and food loss. J Ind Ecol 19:391–401CrossRef
    Huerta JH, Muñoz E, Montalba R (2012) Evaluation of two production methods of Chilean wheat by life cycle assessment (LCA). Idesia 30:101–110CrossRef
    Ingwersen W (2012) Life cycle assessment of fresh pineapple from Costa Rica. J Clean Prod 35:152–153CrossRef
    INIA (2010) Huella de Carbono en productos de exportación agropecuarios de Chile. Instituto de Investigaciones Agropecuarias (INIA), Servicios de Ingeniería DEUMAN Ltda, Santiago, Chile
    IPCC (2006a) N2O emissions from managed soils and CO2 emissions from lime and urea application. Chapter 11. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) Intergovernmental Panel on Climate Change guidelines for national greenhouse gas inventories. National Greenhouse Gas Inventories Programme, IGES Hayama, Japan
    IPCC (2006b) Agriculture, forestry and other land use. Introduction. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) Intergovernmental Panel on Climate Change guidelines for national greenhouse gas inventories. National Greenhouse Gas Inventories Programme, IGES Hayama, Japan
    Iriarte A, Rieradevall J, Gabarrell X (2010) Life cycle assessment of sunflower and rapeseed as energy crops under Chilean conditions. J Clean Prod 18:336–345CrossRef
    Iriarte A, Rieradevall J, Gabarrell X (2011) Environmental impacts and energy demand of rapeseed as an energy crop in Chile under different fertilization and tillage practices. Biomass Bioenergy 35:4305–4315CrossRef
    Iriarte A, Almeida MG, Villalobos P (2014) Carbon footprint of premium quality export bananas: case study in Ecuador, the world’s largest exporter. Sci Total Environ 472:1082–1088CrossRef
    ISO (2006) ISO 14040:2006. Environmental management—life cycle assessment—principles and framework. International Organization for Standardization, Geneva
    Kaltsas AM, Mamolos AP, Tsatsarelis CA, Nanos GD, Kalburtji KL (2007) Energy budget in organic and conventional olive groves. Agric Ecosyst Environ 122:243–251CrossRef
    Kavargiris SE, Mamolos AP, Tsatsarelis CA, Nikolaidou AE, Kalburtji KL (2009) Energy resources’ utilization in organic and conventional vineyards: energy flow, greenhouse gas emissions and biofuel production. Biomass Bioenergy 33:1239–1250CrossRef
    Kramer K, Moll H, Nonhebel S, Wilting H (1999) Greenhouse gas emissions related to Dutch food consumption. Energy Policy 27:203–216CrossRef
    Kroodsma DA, Field CB (2006) Carbon sequestration in California agriculture, 1980–2000. Ecol Appl 16:1975–1985CrossRef
    Lal R (2009) Challenges and opportunities in soil organic matter research. Eur J Soil Sci 60:158–169CrossRef
    Laurent A, Olsen S, Hauschild M (2012) Limitations of carbon footprint as indicator of environmental sustainability. Environ Sci Technol 46:4100–4108CrossRef
    Liu Y, Langer V, Høgh-Jensen H, Egelyng H (2010) Life cycle assessment of fossil energy use and greenhouse gas emissions in Chinese pear production. J Clean Prod 18:1423–1430CrossRef
    Luo L, Van Der Voet E, Huppes G (2009) Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil. Renewable Sustainable Energy Rev 13:1613–1619CrossRef
    Meier M, Stoessel F, Jungbluth N, Juraske R, Schader C, Stolze M (2014) Environmental impacts of organic and conventional agricultural products—are the differences captured by life cycle assessment? J Environ Manage 149:193–208CrossRef
    Milà i Canals L, Burnip GM, Cowell SJ (2006) Evaluation of the environmental impacts of apple production using Life Cycle Assessment (LCA): case study in New Zealand. Agric Ecosyst Environ 114:226–238CrossRef
    Mithraratne N, McLaren S, Barber A (2008) Carbon footprinting for the kiwifruit supply chain. Report on methodology and scoping study. Landcare Research. Ministry of Agriculture and Forestry, New Zealand
    Mudahar M, Hignett T (1987) Energy requirements, technology, and resources in the fertilizer sector. In: Helsel ZR (ed) Energy in world agriculture. Elsevier, Amsterdam, pp 26–61
    Öborn I, Sonesson U, Stern S, Berg C, Gunnarsson S, Lagerkvist C (2002) Where are the weak links in a sustainable food chain? An interview survey. MAT21 Rapport. Swedish University of Agricultural Sciences, Uppsala
    ODEPA (2013a) Inserción de la agricultura chilena en los mercados internacionales. ODEPA (Oficina de Estudios y Políticas Agrarias), Gobierno de Chile, Santiago, Chile
    ODEPA (2013b) Alternativas para el cultivo de arándanos. ODEPA (Oficina de Estudios y Políticas Agrarias), Gobierno de Chile, Santiago, Chile
    ODEPA (2013c) Evolución de las exportaciones silvoagropecuarias de Chile, 2003 - junio 2013. ODEPA (Oficina de Estudios y Políticas Agrarias), Gobierno de Chile, Santiago, Chile
    OECD (2001) Environmental indicators for agriculture, Vol. 3. Methods and results, vol OECD (Organization for Economic Cooperation and Development). France, Paris
    Ossés de Eicker M, Hischier R, Hurni H, Zah R (2010) Using non-local databases for the environmental assessment of industrial activities: the case of Latin America. Environ Impact Assess Rev 30:145–157CrossRef
    Page G, Kelly T, Minor M, Cameron M (2011) Modeling carbon footprints of organic orchard production systems to address carbon trading: an approach based on life cycle assessment. HortScience 46:324–327
    Pathak H, Jain N, Bhatia A, Patel J, Aggarwal P (2010) Carbon footprints of Indian food items. Agric Ecosyst Environ 139:66–73CrossRef
    PE International (2014) GaBi 4 Software system and databases for life cycle engineering. Germany. Available at http://​www.​gabi-software.​com/​international/​software/​gabi-software/​
    Percival D, Dias G (2014) Energy consumption and greenhouse gas production in wild blueberry production. Acta Hortic (ISHS) 1017:163–168CrossRef
    PRé (2015) SimaPro Database Manual—methods library. PRé Consultants B.V, The Netherlands
    Renouf M, Wegener M, Nielsen L (2008) An environmental life cycle assessment comparing Australian sugarcane with US corn and UK sugar beet as producers of sugars for fermentation. Biomass Bioenergy 32:1144–1155CrossRef
    SAG (2013) Agricultura orgánica nacional. Servicio Agrícola y Ganadero (SAG), Ministerio de Agricultura, Santiago, Chile
    Salami P, Ahmadi H, Keyhani A (2010) Estimating the equivalent energy for single super phosphate production in Iran. Journal of Scientific Review 2:1–10
    Schmidt JH (2007) Life assessment of rapeseed oil and palm oil. Ph. D. thesis, part 3: life cycle inventory of rapeseed oil. Aalborg University, Aalborg, Denmark
    Shepherd M, Pearce B, Cormack B et al (2003) An assessment of the environmental impacts of organic farming. A review for DEFRA-funded Project OF0405, London, UK
    Stolze M, Piorr A, Häring A, Dabbert S (2000) Environmental impacts of organic farming in Europe. Organic farming in Europe: economics and policy. University of Hohenheim, Stuttgart
    Tan RR, Culaba AB, Purvis MR (2002) Application of possibility theory in the life‐cycle inventory assessment of biofuels. Int J Energy Res 26:737–745CrossRef
    Tukker A (2000) Life cycle assessment as a tool in environmental impact assessment. Environ Impact Assess Rev 20:435–456CrossRef
    UNEP (2000) Agenda 21. Chapter 14: promoting sustainable agriculture and rural development. United Nations Environment Programme (UNEP), New York
    Van der Werf H, Gaillard G, Biard Y, Koch P, Basset-Mens C et al (2010) Creation of a public LCA database of French agricultural raw products: Agri-BALYSE. Proceedings of LCA Food, Bari, Italy
    Venkat K (2012) Comparison of twelve organic and conventional farming systems: a life cycle greenhouse gas emissions perspective. J Sustainable Agric 36:620–649CrossRef
    Weidema B, Thrane M, Christensen P, Schmidt J, Løkke S (2008) Carbon footprint: a catalyst for life cycle assessment? J Ind Ecol 12:3–6CrossRef
    Wiedmann T, Minx J (2007) A definition of carbon footprint. Ecol Econ Res Trends 2:55–65
  • 作者单位:Hanna Cordes (1) (2)
    Alfredo Iriarte (3) (4)
    Pablo Villalobos (5)

    1. International Agribusiness and Rural Development Program, Department of Agricultural Economics and Rural Development, Faculty of Agricultural Sciences, Georg-August-Universität, Platz der Göttinger Sieben 5, Göttingen, Germany
    2. International Agribusiness Program, Faculty of Agricultural Sciences, Universidad de Talca, Casilla 747, Talca, Chile
    3. Department of Industrial Engineering (former Department of Industrial Management and Modeling), Faculty of Engineering, Universidad de Talca, Casilla 747, Talca, Chile
    4. Chilean Food Processing Research Center—CEAP (Centro de Estudios en Alimentos Procesados), R09I2001, Av. San Luis km 1, Talca, Chile
    5. Department of Agricultural Economics, Faculty of Agricultural Sciences, Universidad de Talca, Casilla 747, Talca, Chile
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Environmental Economics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1614-7502
文摘
Purpose Chile is the second largest blueberry producer and exporter worldwide. At the global level, there is a lack of information by means of field data about greenhouse gas emissions from organic cultivation of this fruit. This study obtains a resource use inventory and assesses the cradle-to-farm gate carbon footprint (CF) of organic blueberry (Vaccinium corymbosum) production in the main cultivation area of Chile in order to identify CF key factors and to provide improvement measures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700