Economics, energy, and environmental assessment of diversified crop rotations in sub-Himalayas of India
详细信息    查看全文
  • 作者:Raman Jeet Singh ; Roshan Lal Meena ; N. K. Sharma…
  • 关键词:Carbon emission ; Energy use efficiency ; Maize ; Rice ; Tomato ; Wheat
  • 刊名:Environmental Monitoring and Assessment
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:188
  • 期:2
  • 全文大小:578 KB
  • 参考文献:C.S.W.C.R.T.I. (2014). http://​www.​cswcrtiweb.​org/​index1.​html?​Technology.​html Assessed on 12.08.2014 at 3.00 pm.
    Choudhary, V. K., & Suresh, K. P. (2013). Crop and water productivity, profitability and energy consumption pattern of a maize-based crop sequence in the North Eastern Himalayan Region, India. Archives of Agronomy and Soil Sciences, 59(5), 653–669. http://​dx.​doi.​org/​10.​1080/​03650340.​2012.​665992 .CrossRef
    Choudhary, A. K., Pooniya, V., Kumar, A., Sepat, S., Bana, R. S., & Jat, S. L. (2013). Scope and potential of maize (Zea mays L.) in North-Western Himalayas. In A. Kumar, S. L. Jat, R. Kumar, & O. P. Yadav (Eds.), Maize production systems for improving resource-use efficiency and livelihood security (pp. 69–73). Pusa Campus, New Delhi- 110 012: Directorate of Maize Research.
    Cochran, W.G., & Cox G.M. (1957). Experimental Designs. (2nd ed.). Wiley 53, 43–50
    Devasenapathy, P., Senthilkumar, G., & Shanmugam, P. M. (2009). Energy management in crop production. Indian Journal of Agronomy, 54(1), 80–90.
    Ghorbani, R., Mondani, F., Amirmoradi, S., Feizi, H., Khorramdel, S., Teimouri, M., Sanjani, S., Anvarkhah, S., & Aghel. (2011). A case study of energy use and economical analysis of irrigated and dryland wheat production systems. Applied Energy, 88, 283–288. doi:10.​1016/​j.​apenergy.​2010.​04.​028 .CrossRef
    Ghosh, B. N., Dogra, P., Sharma, N. K., Alam, N. M., Singh, R. J., & Mishra, P. K. (2015). Effects of resource conservation practices on productivity, profitability and energy budgeting in maize–wheat cropping system of Indian sub-Himalayas. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. doi:10.​1007/​s40011-015-0492-2 .
    Grassinia, P., Thorburnb, J., Burrc, C., & Cassman, K. G. (2011). High-yield irrigated maize in the Western U.S. Corn Belt: I. On-farm yield, yield potential, and impact of agronomic practices. Field Crops Research, 120(1), 142–150. doi:10.​1016/​j.​fcr.​2010.​09.​012 .CrossRef
    Headau, N. K., Tuti, M. D., Stanley, J., Mina, B. L., Agarwal, P. K., Bisht, J. K., & Bhatt, J. C. (2014). Energy -use efficiency and economic analysis of vegetable cropping sequences under greenhouse condition. Energy Efficiency, 7(3), 507–515. doi:10.​1007/​s12053-013-9239-1 .CrossRef
    Heidari, M. D., & Omid, M. (2011). Energy use patterns and econometric models of major greenhouse vegetable productions in Iran. Energy, 36, 220–225. doi:10.​1016/​j.​energy.​2010.​10.​048 .CrossRef
    I.P.C.C. (2006). IPCC guidelines for national greenhouse gas inventories. In H. A. S. Eggleston, L. Biennia, K. Miwa, T. Negara, & K. Tanabe (Eds.), Prepared by National Greenhouse Gas Inventories Programme. IGES, Japan: Eggleston Published.
    Jayne, T. S., Chamberlin, J., & Headey, D. D. (2014). Land pressures, the evolution of farming systems, and development strategies in Africa: a synthesis. Food Policy, 48, 1–17. http://​dx.​doi.​org/​10.​1016/​j.​foodpol.​2014.​05.​014 .CrossRef
    Lal, R. (2004). Carbon emission from farm operations. Environmental International, 30, 981–990. doi:10.​1016/​j.​envint.​2004.​03.​005 .CrossRef
    Loucks, O.L., & D’Alessio, A. (1975). Energy Flow and Human Adaptation. A Summary of Ecosystem Studies. The Institute of Ecology, Madison, WI
    Ma, B. L., Liang, B. C., Biswas, D. K., Morrison, M. J., & McLaughlin, N. B. (2012). The carbon footprint of maize production as affected by nitrogen fertilizer and maize-legume rotations. Nutrient Cycling in Agroecosystem, 94, 15–31. doi:10.​1007/​s10705-012-9522-0 .CrossRef
    Marland, G., West, T. O., Schlamadinger, B., & Canella, L. (2003). Managing soil organic carbon in agriculture: the net effect on green gas house emissions. Tellus, 55B, 613–621.CrossRef
    Martin, J. F., Diemont, S. A. W., Powell, E., Stanton, M., & Levy-Tacher, S. (2006). Emergy evaluation of the performance and sustainability of three agricultural systems with different scales and management. Agriculture Ecosystem and Environment, 115(1–4), 128–140. doi:10.​1016/​j.​agee.​2005.​12.​016 .CrossRef
    Nautiyal, S., Kaechele, H., Rao, K. S., Maikhuri, R. K., & Saxena, K. G. (2007). Energy and economic analysis of traditional versus introduced crops cultivation in the mountains of the Indian Himalayas: a case study. Energy, 32, 2321–2335. doi:10.​1016/​j.​energy.​2007.​07.​011 .CrossRef
    Pimentel, D. (1980). Energy inputs for the production, formulation, packaging, and transport of various pesticides. In D. Pimentel (Ed.), Handbook of energy utilization in agriculture (pp. 45–55). Boca Raton, FL: CRC.
    Pimentel, D., Hurd, L. E., Belloti, A. C., Forester, M. J., Oka, I. N., & Sholes, O. D. (1973). Food production and the energy crisis. Science, 102, 443–449.CrossRef
    Samra, J.S., Dhyani, B.L. & Sharma, A.R. (1999). Problems and prospectus of natural resource management in Indian Himalayas—a base paper. Hill and Mountain Agro-ecosystem Directorate, Dehradun (NATP).pp 146.
    Sati, V. P. (2012). Agricultural diversification in the Garhwal Himalaya: a spatio-temporal analysis. Sustainable Agriculture Research, 1(1), 77–86. doi:10.​5539/​sar.​v1n1p77 .CrossRef
    Sharma, N. K., Ghosh, B. N., Mandal, D., Singh, R. J., & Mishra, P. K. (2014). Conservation agriculture for resource conservation in north-western Himalaya region. In J. Somasundaram et al. (Eds.), Conservation agriculture for carbon sequestration and sustaining soil health (pp. 105–126). New Delhi, India: New India.
    Singh, R. J. (2012). Weed management in irrigated wheat (Triticum aestivum) with special reference to buttercup weed (Ranunculus spp) in north-west Himalayas. Indian Journal of Agricultural Sciences, 82(8), 706–710.
    Singh, R. J., & Ahlawat, I. P. S. (2011). Productivity, competition indices and nutrients dynamics of Bt cotton (Gossypium hirsutum L.) - groundnut (Arachis hypogaea L.) intercropping system using different fertility levels. Indian Journal of Agricultural Sciences, 81(7), 606–611.
    Singh, R. J., & Ahlawat, I. P. S. (2015). Energy budgeting and carbon footprint of transgenic cotton-wheat production system through peanut intercropping and FYM addition. Environmental Monitoring and Assessment, 187(5), 1–16. doi:10.​1007/​s10661-015-4516-4 .CrossRef
    Singh, R. J., Ghosh, B. N., Sharma, N. K., Patra, S., Dadhwal, K. S., & Mishra, P. K. (2016). Energy budgeting and emergy synthesis of rainfed maize-wheat rotation system with different soil amendment applications. Ecological Indicators, 61(2), 753–765. doi:10.​1016/​j.​ecolind.​2015.​10.​026 .CrossRef
    Tuti, M. D., Ved, P., Pandey, B. M., Bhattacharyya, R., Mahanta, D., Bisht, J. K., Kumar, M., Mina, B. L., Kumar, N., Bhatt, J. C., & Srivastva, A. K. (2012). Energy budgeting of colocasia-based cropping system in the Indian sub-Himalayas. Energy, 45, 986–993. http://​dx.​doi.​org/​10.​1016/​j.​energy.​2012.​06.​056 .CrossRef
    van Groenigen, J. W., Velthof, G. L., Oenema, O., Van Groenigen, K. J., & Van Kessel, C. (2010). Towards an agronomic assessment of N2O emissions: a case study for arable crops. European Journal of Soil Sciences, 61, 903–913. doi:10.​1111/​j.​1365-2389.​2009.​01217.​x .CrossRef
    West, T. O., & Marland, G. (2002). A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agriculture Ecosystem and Environment, 91, 217–232. doi:10.​1016/​S0167-8809(01)00233-X .CrossRef
  • 作者单位:Raman Jeet Singh (1)
    Roshan Lal Meena (2)
    N. K. Sharma (1)
    Suresh Kumar (3)
    Kuldeep Kumar (4)
    Dileep Kumar (5)

    1. ICAR-Indian Institute of Soil and Water Conservation, 218 Kaulagarh Road, Dehradun, 248 195, India
    2. ICAR-National Bureau of Soil Survey and Land Use Planning, Research Centre, Udaipur, Rajasthan, 313 001, India
    3. ICAR-Indian Institute of Soil and Water Conservation, Bellary, Karnataka, 583 104, India
    4. ICAR-Indian Institute of Soil and Water Conservation, Research Centre, Kota, Rajasthan, 324 002, India
    5. ICAR-Indian Institute of Soil and Water Conservation, Research Centre, Agra, U.P., 282 006, India
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
    Ecology
    Atmospheric Protection, Air Quality Control and Air Pollution
    Environmental Management
  • 出版者:Springer Netherlands
  • ISSN:1573-2959
文摘
Reducing the carbon footprint and increasing energy use efficiency of crop rotations are the two most important sustainability issues of the modern agriculture. Present study was undertaken to assess economics, energy, and environmental parameters of common diversified crop rotations (maize-tomato, and maize-toria-wheat) vis-a-vis traditional crop rotations like maize-wheat, maize + ginger and rice-wheat of the north-western Himalayan region of India. Results revealed that maize-tomato and maize + ginger crop rotations being on par with each other produced significantly higher system productivity in terms of maize equivalent yield (30.2–36.2 t/ha) than other crop rotations (5.04–7.68 t/ha). But interestingly in terms of energy efficiencies, traditional maize-wheat system (energy efficiency 7.9, human energy profitability of 177.8 and energy profitability of 6.9 MJ/ha) was significantly superior over other systems. Maize + ginger rotation showed greater competitive advantage over other rotations because of less consumption of non-renewable energy resources. Similarly, maize-tomato rotation had ability of the production process to exploit natural resources due to 14–38 % less use of commercial or purchased energy sources over other crop rotations. Vegetable-based crop rotations (maize + ginger and maize-tomato) maintained significantly the least carbon footprint (0.008 and 0.019 kg CO2 eq./kg grain, respectively) and the highest profitability (154,322 and 274,161 Rs./ha net return, respectively) over other crop rotations. As the greatest inputs of energy and carbon across the five crop rotations were nitrogen fertilizer (15–29 % and 17–28 %, respectively), diesel (14–24 % and 8–19 %, respectively) and irrigation (10–27 % and 11–44 %, respectively), therefore, alternative sources like organic farming, conservation agriculture practices, soil and water conservation measures, rain water harvesting etc. should be encouraged to reduce dependency of direct energy and external carbon inputs particularly in sub-Himalayas of India.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700