New reflectance spectra of 40 asteroids: A comparison with the previous results and an interpretation
详细信息    查看全文
  • 作者:V. V. Busarev
  • 关键词:asteroid spectrophotometry ; mineralogy ; surface material heterogeneities ; spectral phase effect
  • 刊名:Solar System Research
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:50
  • 期:1
  • 页码:13-23
  • 全文大小:452 KB
  • 参考文献:Adams, J.B, Interpretation of visible and near-infrared diffuse reflectance spectra of pyroxenes and other rockforming minerals, in Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals, Karr, C., Ed., New York: Acad. Press, 1975, pp. 91–116.CrossRef
    Bakhtin, A.I, Porodoobrazuyushchie silikaty: opticheskie spektry, kristallokhimiya, zakonomernosti okraski, tipomorfizm (Rock-Forming Silicates: Optical Spectra, Crystal Chemistry, Coloring Regularities, Typomorphysm), Kazan: Kazan State Univ., 1985.
    Bell, J.F., Davis, D.R., Hartmann, W.K., and Gaffey, M.J, The big picture, in Asteroids II, Binzel, R.P., Gehrels, T., and Mattews, M.S., Eds., Tucson: Univ. Arizona Press, 1989, pp. 921–945.
    Betekhtin, A.G, Kurs mineralogii (Course of Mineralogy), Moscow: Gos. izd. geolog. lit., 1951.
    Burns, R.G, Mineralogical Applications of Crystal Field Theory, New York: Cambridge Univ. Press, 1993.CrossRef
    Bus, S.J. and Binzel, R.P., Phase IIof the small main-belt asteroid spectroscopic survey. A feature-based taxonomy, Icarus, 2002b, vol. 158, pp. 146–177.
    Bus, S.J. and Binzel, R.P., Phase IIof the small main-belt asteroid spectroscopic survey. The observations, Icarus, 2002a, vol. 158, pp. 106–145.CrossRef ADS
    Busarev, V.V, Spectrophotometry of atmosphereless celestial bodies of the solar system, Solar Syst. Res., 1999, vol. 33, pp. 120–129.ADS
    Busarev, V.V, Hydrated silicates on asteroids of M-, S-, and E-types as possible traces of collisions with bodies of the Jupiter growth zone, 0Solar Syst. Res., 2002a, vol. 36, no. 1, pp. 39–47.
    Busarev, V.V. and Taran, M.N, On the spectral similarity of carbonaceous chondrites and some hydrated and oxidized asteroids, Proc. “Asteroids, Comets, Meteors (ACM 2002)”, Berlin: Techn. Univ. of Berlin, 2002b, pp. 933–936.
    Busarev, V.V., Bochkov, V.V, Prokof’eva, V.V., and Taran, M.N., Characterizing 21 Lutetia with its reflectance spectra, in The new ROSETTA Targets, Colangeli, L., et al., Eds., Kluwer Acad. Publ., 2004, pp. 79–83.CrossRef
    Busarev, V.V., Volovetskij, M.V., Taran, M.N, Fel’dman, V.I., Hiroi, T., and Krivokoneva, G.K., Results of reflectance spectral, Mössbauer, X-rày and electron microprobe investigations of terrestrial serpentine samples, Proc. 48th Vernadsky-Brown Microsymposium on Comparative Planetology, Moscow, 2008, Abstr. 6.
    Busarev, V.V, Spectral investigations of asteroids 21 Lutetia and 4 Vesta as objects of space missions, Solar Sys. Res., 2010, vol. 44, no. 6, pp. 507–519.CrossRef ADS
    Busarev, V.V, Asteroids 10 Hygiea, 135 Hertha, and 196 Philomela: heterogeneity of the material from the reflectance spectra, Solar Syst. Res., 2011, vol. 45, no. 1, pp. 43–52.CrossRef ADS
    Calvin, W.M. and King, T.V.V, Spectral characteristics of iron-bearing phyllosilicates: Comparison to Orgueil (CI1), Murchison and Murray (CM2), Met. Planet. Sci., 1997, vol. 32, pp. 693–701.CrossRef ADS
    Cayrel de Strobel, G, Stars resembling the Sun, Astron. Astrophys. Rev., 1996, vol. 7, pp. 243–288.CrossRef ADS
    Chapman, C.R., McCord, T.B., and Johnson, T.V, Asteroid spectral reflectivities, Astron. J., 1973, vol. 78, pp. 126–140.CrossRef ADS
    Clark, B.E., Binzel, R.P., Howell, E.S., Cloutis, E.A., Ockert-Bell, M., Christensen, P., Barucci, M.A., DeMeo, F., Lauretta, D.S., Connolly, H., Soderberg, A., Hergenrother, C., Lim, L., Emery, J., and Mueller, M, Asteroid (101955) 1999 RQ36: spectroscopy from 0.4 to 2.4 lm and meteorite analogs, Icarus, 2011, vol. 216, pp. 462–475.CrossRef ADS
    Cloutis, E.A., Hiroi, T., Gaffey, M.J., Alexander, C.M.O.D., and Mann, P, Spectral reflectance properties of carbonaceous chondrites: 1. CI chondrites, Icarus, 2011a, vol. 212, pp. 180–209.CrossRef ADS
    Cloutis, E.A., Hudon, P., Hiroi, T., Gaffey, M.J., and Mann, P, Spectral reflectance properties of carbonaceous chondrites: 2. CM chondrites, Icarus, 2011b, vol. 216, pp. 309–346.CrossRef ADS
    DeMeo, F.E., Binzel, R.P., Slivan, S.M., and Bus, S.J, An extension of the bus asteroid taxonomy into the nearinfrared, Icarus, 2009, vol. 202, pp. 160–180.CrossRef ADS
    De Sanctis, M.C., Combe, J.-Ph., Ammannito, E., and 18 coauthors, Detection of widespread hydrated materials on Vesta by the VIR imaging spectrometer on board the dawn mission, Astrophys. J. Lett., 2012, vol. 758, p. L36.CrossRef ADS
    Drake, M.J, Geochemical evolution of the eucrite parent body: possible nature and evolution of Asteroid 4 Vesta?, in Asteroids, Gehrels, T., Ed., Tucson: Univ. Arizona Press, 1979, pp. 765–782.
    Duke, M.B. and Silver, L.T, Petrology of eucrites, howardites and mesosiderites, Geochim. Cosmochim. Acta, 1967, vol. 31, pp. 1637–1665.CrossRef ADS
    Efemeridy malykh planet na 2010 god (Minor Planets Ephemeredes for 2010), Batrakov, Yu.V., et al, Eds., St. Petersburg: Nauka, 2009, pp. 246–250.
    Ferguson, J. and Fielding, P.E, The origins of the colours of yellow, green and blue sapphires, Chem. Phys. Lett., 1971, vol. 10, pp. 262–265.CrossRef ADS
    Fornasier, S., Migliorini, A., Dotto, E., and Barucci, M.A, Visible and near infrared spectroscopic investigation of E-type asteroids, including 2867 Steins, a target of the Rosetta mission, Icarus, 2008, vol. 196, pp. 119–134.
    Fornasier, S., Clark, B.E., Dotto, E., Migliorini, A., Ockert-Bell, M., and Barucci, M.A, Spectroscopic survey of M-type asteroids, Icarus, 2010, vol. 210, pp. 655–673.CrossRef ADS
    Fornasier, S., Clark, B.E., and Dotto, E, Spectroscopic survey of X-type asteroids, Icarus, 2011, vol. 214, pp. 131–146.CrossRef ADS
    Fornasier, S., Lantz, C., Barucci, M.A., and Lazzarin, M, Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy, Icarus, 2014, vol. 233, pp. 163–178.CrossRef ADS
    Gaffey, M.J., Bell, J.F., and Cruikshank, D.P, Reflectance spectroscopy and asteroid surface mineralogy, in Asteroids II, Binzel, R.P., Gehrels, T., and Mattews, M.S., Eds., Tucson: Univ. Arizona Press, 1989, pp. 98–127.
    Gaffey, M.J. and Kelley, S, Mineralogical variations among high albedo E-type asteroids: implications for asteroid igneous processes, Proc. 35th Lunar and Planet. Sci. Conf., Houston, 2004, Abs. #1812.
    Grimm, R.E. and McSween, H.Y, Jr., Heliocentric zoning of the asteroid belt by aluminum-26 heating, Science, 1993, vol. 259, pp. 653–655.ADS
    Hardorp, J, The Sun among the stars, Astron. Astrophys., 1980, vol. 91, pp. 221–232.ADS
    Hergenrother, C.W., Nolan, M.C., Binzel, R.P., and 13 coauthors, Lightcurve, color and phase function photometry of the OSIRIS-REx target asteroid (101955) Bennu, Icarus, 2013, vol. 226, pp. 663–670.
    Khomenko, V.M. and Platonov, A.N, Porodoobrazuyushchie pirokseny: opticheskie spektry, okraska i pleokhroizm (Rock-Forming Pyroxenes: Optical Spectra, Color and Pleochroism), Kiev: Naukova dumka, 1987.
    Korzhinskii, D.S, Fiziko-khimicheskie osnovy paragenezisov mineralov (Physical and Chemical Foundations of Minerals Coexisting), Moscow: USSR Acad. Sci., 1957.
    Kurucz, R.L, New atlases for solar flux, irradiance, central intensity, and limb intensity, Mem. Soc. Astron. Italiana Suppl., 2005, vol. 8, pp. 189–191.ADS
    Lazzarin, M., Magrin, S., Marchi, S., Dotto, E., Perna, D., Barbieri, C., Barucci, M.A., and Fulchignoni, M, Rotational variation of the spectral slope of (21) Lutetia, the second asteroid target of ESA Rosetta mission, Mon. Notic. Roy. Astron. Soc., 2010, vol. 408, pp. 1433–1437.CrossRef ADS
    Lazzaro, D., Angeli, C.A., Carvano, J.M, Mothé-Diniz, T., Duffard, R., and Florczak, M., S3OS2: the visible spectroscopic survey of 820 asteroids, Icarus, 2004, vol. 172, pp. 179–220.CrossRef ADS
    Lebofsky, L.A., Sykes, M.V., Tedesco, E.F., Veeder, G.J., Matson, D.L., Brown, R.H., Gradie, J.C., Feierberg, M.A., and Rudy, R.J., A refined ‘standard’ thermal model for asteroids based on observations of 1 Ceres and 2 Pallas, Icarus, 1986, vol. 68, pp. 239–251.CrossRef ADS
    Li, J.-Y., McFadden, L.A., Parker, J.Wm., Young, E.F., Stern, S.A., Thomas, P.C., Russell, C.T., and Sykes, M.V, Photometric analysis of 1 Ceres and surface mapping from HST observations, carus, 2006, vol. 182, pp. 143–160.ADS
    Loeffler, B.M., Burns, R.G., Tossel, J.A., Vaughan, D.J., and Johnson, K.H, Charge transfer in lunar materials: interpretation of ultraviolet-visible spectral properties of the Moon, Geochim. Cosmochim. Acta, 1974, vol. 3, suppl. 5: Proc. 5th Lunar Conf., pp. 3007–3016.
    Mattson, S.M. and Rossman, G.R, Ferric iron in tourmaline, Phys. Chem. Minerals, 1984, vol. 11, pp. 225–234.CrossRef ADS
    McCord, T.B., Li, J.-Y., Combe, J.-P., and 26 coauthors, Dark material on Vesta from the infall of carbonaceous volatile-rich material, Nature, 2012, vol. 491, pp. 83–86.CrossRef ADS
    McSween, H.Y, Jr., Ghosh, A., Grimm, R.E., Wilson, L., and Young, E.D., Thermal evolution models of asteroids, in Asteroids III, Bottke, W., et al., Eds., Tucson: Univ. Arizona Press, 2002, pp. 559–571.
    Ockert-Bell, M.E., Clark, B.E., Sheppard, M.K., Isaacs, R.A., Cloutis, E.A., Fornasier, S., and Bus, S.J, The composition of M-type asteroids: synthesis of spectroscopic and radar observations, Icarus, 2010, vol. 210, pp. 674–692.CrossRef ADS
    Perna, D, Kauchová, Z., Ieva, S., Fornasier, S., Barucci, M.A., Lantz, C., Dotto, E., and Strazzulla, G., Short-term variability over the surface of (1) Ceres: a changing amount of water ice?, Astron. Astrophys., 2015, vol. 575, id L1.
    Petrova, E.V. and Tishkovets, V.P, Light scattering by morphologically complex objects and opposition effects (a review), Solar Syst. Res., 2011, vol. 45, no. 4, pp. 304–322.CrossRef ADS
    Platonov, A.N, Priroda okraski mineralov (Nature of Minerals Coloring), Kiev: Naukova dumka, 1976.
    Reddy, V, Le Corre, L., O’Brien, D.O., and 22 coauthors, Delivery of dark material to Vesta via carbonaceous chondritic impacts, Icarus, 2012, vol. 221, pp. 544–559.CrossRef ADS
    Rivkin, A.S., Howell, E.S., Britt, D.T., Lebofsky, L.A., Nolan, M.C., and Branston, D.D., 3-μm spectrophotometric survey of Mand E-class asteroids, Icarus, 1995, vol. 117, pp. 90–100.CrossRef ADS
    Rivkin, A.S., Howell, E.S., Lebofsky, L.A., Clark, B.E., and Britt, D.T, The nature of M-class asteroids from 3-μm observations, Icarus, 2000, vol. 145, pp. 351–368.CrossRef ADS
    Rossman, G.R, Spectroscopic and magnetic studies of ferric iron hydroxy sulfates: intensificadion of color in ferric iron clusters bridged by a single hydroxide ion, Am. Mineral., 1975, vol. 60, pp. 698–704.
    Shepard, M.K., Clark, B.E., Ockert-Bell, M., and 10 coauthors, A radar survey of Mand X-class asteroids. II. Summary and synthesis, Icarus, 2010, vol. 208, pp. 221–237.CrossRef ADS
    Shepard, M.K., Harris, A.W., Taylor, P.A., and 7 coauthors, Radar observations of asteroids 64 Angelina and 69 Hesperia, Icarus, 2011, vol. 215, pp. 547–551.CrossRef ADS
    Taran, M.N. and Rossman, G.R, High-temperature, highpressure optical spectroscopic study of ferric-ironbearing tourmaline, Am. Mineral., 2002, vol. 87, pp. 1148–1153.CrossRef
    Tedesco, E.F., Noah, P.V., Noah, M., and Price, S.D., IRAS minor planet survey V6.0, NASA Planetary Data System, IRAS-A-FPA-3-RDR-IMPS-V6.0, 2004.
    Tholen, D.J, Asteroid taxonomic classifications, in Asteroids II, Binzel, R.P., Gehrels, T., and Mattews, M.S., Eds., Tucson: Univ. Arizona Press, 1989a, pp. 1139–1150.
    Tholen, D.J. and Barucci, M.A, Asteroid taxonomy, in Asteroids II, Binzel, R.P., Gehrels, T., and Mattews, M.S., Eds., Tucson: Univ. Arizona Press, 1989b, pp. 298–315.
    Thomas, P.S., Binzel, R.P., Gaffey, M.J., Storrs, A.D., Wells, E.N., and Zellner, B.H, Impact excavation on asteroid 4 Vesta: Hubble Space Telescope results, Science, 1997, vol. 277, pp. 1492–1495.CrossRef ADS
    Thomas, P.C., Parker, J.Wm., McFadden, L.A., Russell, C.T., Stern, S.A., Sykes, M.V., and Young, E.F, Differentiation of the asteroid Ceres as revealed by its shape, Nature, 2005, vol. 437, pp. 224–226.CrossRef ADS
    Zolensky, M.E., Weisberg, M.K., Buchanan, P.C., and Mittlefehldt, D.W, Mineralogy of carbonaceous chondrite clasts in HED achondrites and the Moon, Met. Planet. Sci., 1996, vol. 31, pp. 518–537.CrossRef ADS
  • 作者单位:V. V. Busarev (1)

    1. Sternberg Astronomical Institute, Moscow Lomonosov State University, Moscow, 119991, Russia
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Astronomy, Astrophysics and Cosmology
    Planetology
    Astronomy
    Astrophysics
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1608-3423
文摘
This paper presents and discusses selected reflectance spectra of 40 Main Belt asteroids. The spectra have been obtained by the author in the Crimean Laboratory of the Sternberg Astronomical Institute (2003–2009). The aim is to search for new spectral features that characterize the composition of the asteroids’ material. The results are compared with earlier findings to reveal substantial irregularities in the distribution of the chemical-mineralogical compositions of the surface material of a number of minor planets (10 Hygiea, 13 Egeria, 14 Irene, 21 Lutetia, 45 Eugenia, 51 Nemausa, 55 Pandora, 64 Angelina, 69 Hesperia, 80 Sappho, 83 Beatrix, 92 Undina, 129 Antigone, 135 Hertha, and 785 Zwetana), which are manifest at different rotation phases. The vast majority of the analyzed high-temperature asteroids demonstrate subtle spectral features of an atypical hydrated and/or carbonaceous chondrite material (in the form of impurities or separate units), which are likely associated with the peculiarities of the formation of these bodies and the subsequent dynamic and impact processes, which lead, inter alia, to the delivery of atypical materials. Studies of 4 Vesta aboard NASA’s Dawn spacecraft have found that asteroids of similar types can form their own phyllosilicate generations provided that their surface material contains buried icy or hydrated fragments of impacting bodies. The first evidence has been obtained of a spectral phase effect (SPE) at small phase angles (≤4°) for 10 Hygiea, 21 Lutetia, and, possibly, 4 Vesta. The SPE manifests itself in an increasing spectral coefficient of brightness in the visible range with decreasing wavelength. This effect is present in the reflectance spectrum of CM2 carbonaceous material at a phase angle of 10° and absent at larger angles (Cloutis et al., 2011a). The shape of Hygeia’s reflectance spectra at low phase angles appears to be controlled by the SPE during the most part of its rotation period, which may indicate a predominantly carbonaceous chondrite composition on a part of the asteroid’s surface. For Vesta, the SPE may manifest itself in the flat or slightly concave shape of the asteorid’s reflectance spectra at some of the rotation phases, which is likely caused by the increased number of dark spots on corresponding parts of its surface. Keywords asteroid spectrophotometry mineralogy surface material heterogeneities spectral phase effect

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700