Phenological variability drives the distribution of wildfires in Sardinia
详细信息    查看全文
  • 作者:Antonella De Angelis (1)
    Sofia Bajocco (2)
    Carlo Ricotta (1)
  • 关键词:Clustering ; Fire selectivity ; Image segmentation ; MODIS ; NDVI profiles ; Residuals
  • 刊名:Landscape Ecology
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:27
  • 期:10
  • 页码:1535-1545
  • 全文大小:425KB
  • 参考文献:1. Ahl DE, Gower ST, Burrows SN, Shabanov NV, Myneni RB, Knyazikhin Y (2006) Monitoring spring canopy phenology of a deciduous broadleaf forest using MODIS. Remote Sens Environ 104:88-5 CrossRef
    2. Akther MS, Hassan QK (2011) Remote sensing-based assessment of fire danger conditions over boreal forests. IEEE J Sel Top Appl Earth Obs 4:992-99 CrossRef
    3. Allan G, Johnson A, Cridland S, Fitzgerald N (2003) Application of NDVI for predicting fuel curing at landscape scales in northern Australia: can remotely sensed data help schedule fire management operations? Int J Wildland Fire 12:299-08 CrossRef
    4. Ambrosia VG, Buechel SW, Brass JA, Peterson JR, Davies RH, Kane RJ, Spain S (1998) An integration of remote sensing, GIS, and information distribution for wildfire detection and management. Photogramm Eng Remote Sens 64:977-85
    5. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32-6
    6. Bachelet D, Lenihan JM, Daly C, Neilson RP (2000) Interactions between fire, grazing and climate change at Wind Cave National Park, SD. Ecol Model 134:229-44 CrossRef
    7. Bajocco S, Ricotta C (2008) Evidence of selective burning in Sardinia (Italy): which land cover classes do wildfires prefer? Landscape Ecol 23:241-48 CrossRef
    8. Bajocco S, Pezzatti GB, Mazzoleni S, Ricotta C (2010a) Wildfire seasonality and land use: when do wildfires prefer to burn? Environ Monit Assess 164:445-52 CrossRef
    9. Bajocco S, Rosati L, Ricotta C (2010b) Knowing fire incidence through fuel phenology: a remotely sensed approach. Ecol Model 221:59-6 CrossRef
    10. Bajocco S, Salvati L, Ricotta C (2011) Land degradation vs. fire: a spiral process? Prog Phys Geogr 35:3-8 CrossRef
    11. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical-theoretic approach. Springer, New York
    12. Caccamo G, Chisholm LA, Bradstock RA, Puotinen ML, Pippen BG (2011) Monitoring live fuel moisture content of heathland, shrubland and sclerophyll forest in south-eastern Australia using MODIS data. Int J Wildland Fire 21:257-69 CrossRef
    13. Calcagno V, De Mazancourt C (2010) glmulti: an R package for easy automated model selection with (generalized) linear models. J Stat Softw 34:29. http://www.jstatsoft.org/v34/i12/paper
    14. Catry FX, Rego FC, Silva JS, Moreira F, Camia A, Ricotta C, Conedera M (2010) Fire starts and human activities. In: Silva JS, Rego F, Fernandes P, Rigolot E (eds) Towards integrated fire management—outcomes of the European project fire paradox. European Forest Institute, Joensuu, pp 9-2
    15. Chéret V, Denux JP (2007) Mapping wildfire danger at regional scale with an index model integrating coarse spatial resolution remote sensing data. J Geophys Res 112:G02006 CrossRef
    16. Chuvieco E, Ria?o D, Van Wagtendok J, Morsdof F (2003) Fuel loads and fuel type mapping. In: Chuvieco E (ed) Wildland fire danger estimation and mapping. The role of remote sensing data. World Scientific Publishing, Singapore, pp 119-42 CrossRef
    17. Conedera M, Torriani D, Neff C, Ricotta C, Bajocco S, Pezzatti GB (2011) Using Monte Carlo simulations to estimate relative fire ignition danger in a low-to-medium fire-prone region. For Ecol Manag 261:2179-187 CrossRef
    18. Conti F, Abbate G, Alessandrini A, Blasi C (2005) An annotated checklist of the Italian vascular flora. Palombi Editore, Roma
    19. Cumming SG (2001) Forest type and wildfire in the Alberta boreal mixedwood: what do fires burn? Ecol Appl 11:97-10 CrossRef
    20. Dennison PE, Roberts DA, Peterson SH, Rechel J (2005) Use of normalized difference water index for monitoring live fuel moisture. Int J Remote Sens 26:1035-042 CrossRef
    21. Desbois N, Vidal A (1996) Real-time monitoring of vegetation flammability using NOAA-AVHRR thermal infrared data. EARSeL Adv Remote Sens 4:25-2
    22. Elmore AJ, Asner GP (2005) Satellite monitoring of vegetation phenology and fire fuel conditions in Hawaiian drylands. Earth Interact 9:1-1 CrossRef
    23. Gabban A, San-Miguel-Ayanz J, Barbosa P, Libertá G (2006) Analysis of NOAA-AVHRR NDVI inter-annual variability for forest fire risk estimation. Int J Remote Sens 27:1725-732 CrossRef
    24. Guglietta D, Conedera M, Mazzoleni S, Ricotta C (2011) Mapping fire ignition risk in a complex anthropogenic landscape. Remote Sens Lett 2:213-19 CrossRef
    25. Gute BD, Basak SC, Mills D, Hawkins DM (2002) Tailored similarity spaces for the prediction of physicochemical properties. Internet Electron J Mol Des 1:374-87
    26. Halkidi M, Batistakis Y, Vazirgiannis M (2001) On clustering validation techniques. J Intell Inf Syst 17:107-45 CrossRef
    27. Hassan QK, Bourque CPA, Meng FR, Cox RM (2007) A wetness index using terrain-corrected surface temperature and normalized difference vegetation index derived from standard MODIS products: an evaluation of its use in a humid forest-dominated region of eastern Canada. Sensors 7:2028-048 CrossRef
    28. Hèly C, Flannigan MD, Bergeron Y, McRae DJ (2001) Role of vegetation and weather on fire behavior in the Canadian mixedwood boreal forest using two fire behavior prediction systems. Can J For Res 31:430-41 CrossRef
    29. Hicke JA, Asner GP, Kasischke ES, French NHF, Randerson JT, Collatz GJ, Stocks BJ, Tucker CJ, Los SO, Field CB (2003) Postfire response of North American boreal forest net primary productivity analyzed with satellite observations. Glob Change Biol 9:1145-157 CrossRef
    30. ISPRA—Istituto Superiore per la Protezione e la Ricerca Ambientale (2010) La realizzazione in Italia del Progetto Corine Land Cover 2006. Rapporto 131/2010. ISPRA, Rome
    31. Keane RE, Mincemoyer SA, Schmindt KM, Garner JL, Long DG (2000) Mapping vegetation and fuels for fire management on the Gila National Forest Complex, New Mexico. USDA Forest Service, Rocky Mountain Research Station, Ogden. General Technical Report RMRS-GTR-46-CD
    32. Keeley JE, Fotheringham CJ (2003) Impact of past, present, and future fire regimes on North American Mediterranean shrublands. In: Veblen TT, Baker WL, Montenegro G, Swetnam TW (eds) Fire and climatic change in temperate ecosystems of the western Americas. Springer, New York, pp 218-62 CrossRef
    33. Leblon B (2005) Monitoring forest fire danger with remote sensing. Nat Hazards 35:343-59 CrossRef
    34. Leblon B, Chen J, Alexander ME, White S (2001) Fire danger monitoring using NOAA-AVHRR NDVI images in the case of northern boreal forests. Int J Remote Sens 22:2839-846
    35. Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam
    36. Lloret F, Calvo E, Pons X, Diàz-Delgado R (2002) Wildfires and landscape patterns in the Eastern Iberian Peninsula. Landscape Ecol 17:745-59 CrossRef
    37. Lozano FJ, Suárez-Seoane S, de Luis E (2007) Assessment of several spectral indices derived from multi-temporal Landsat data for fire occurrence probability modelling. Remote Sens Environ 107:533-44 CrossRef
    38. Mermoz M, Kitzberger T, Veblen TT (2005) Landscape influences on occurrence and spread of wildfires in Patagonian forests and shrublands. Ecology 86:2705-715 CrossRef
    39. Moreira F, Rego FC, Ferriera PG (2001) Temporal (1958-995) pattern of change in a cultural landscape of northwestern Portugal: implications for fire occurrence. Landscape Ecol 16:557-67 CrossRef
    40. Mouillot F, Ratte J, Joffre R, Moreno MJ, Rambal S (2003) Some determinants of the spatio-temporal fire cycle in a Mediterranean landscape (Corsica, France). Landscape Ecol 18:665-74 CrossRef
    41. Newnham GJ, Verbesselt J, Grant IF, Anderson SAJ (2011) Relative greenness index for assessing curing of grassland fuel. Remote Sens Environ 115:1456-463 CrossRef
    42. Nunes MCS, Vasconcelos MJ, Pereira JMC, Dasgupta N, Alldredge RJ, Rego FC (2005) Land-cover type and fire in Portugal: do fires burn land cover selectively? Landscape Ecol 20:661-73 CrossRef
    43. Oswald BP, Fancher JT, Kulhavy DL, Reeves HC (1999) Classifying fuels with aerial photography in East Texas. Int J Wildland Fire 9:301-19 CrossRef
    44. Pausas JG (2004) Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Clim Change 63:337-50 CrossRef
    45. Pezzatti GB, Bajocco S, Torriani D, Conedera M (2009) Selective burning of forest vegetation in Canton Ticino (Southern Switzerland). Plant Biosyst 143:609-20 CrossRef
    46. Podur JJ, Martell DL (2009) The influence of weather and fuel type on the fuel composition of the area burned by forest fires in Ontario, 1996-006. Ecol Appl 19:1246-252 CrossRef
    47. Pollard KS, van der Laan MJ (2008) Supervised distance matrices. Stat Appl Genet Mol Biol 7:Article 33
    48. Reed BC, Brown JF, Vandeer Zee D, Loveland TR, Merchant JW, Ohlen DO (1994) Measuring the phenological variability from satellite imagery. J Veg Sci 5:703-14 CrossRef
    49. Ria?o D, Chuvieco E, Salas J, Palacios-Orueta A, Bastarrika A (2002) Generation of fuel type maps from Landsat TM images and ancillary data in Mediterranean ecosystems. Can J For Res 32:1301-315 CrossRef
    50. Ricotta C, Moretti M (2010) Assessing the functional turnover of species assemblages with tailored dissimilarity matrices. Oikos 119:1089-098 CrossRef
    51. Roberts DA, Dennison PE, Gardner ME, Hetzel Y, Ustin SL, Lee CT (2003) Evaluation of the potential of Hyperion for fire danger assessment by comparison to the Airborne Visible/Infrared Imaging Spectrometer. IEEE Trans Geosci Remote Sens 41:1297-310 CrossRef
    52. Roberts DA, Dennison PE, Peterson S, Sweeney S, Rechel J (2006) Evaluation of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Moderate Resolution Imaging Spectrometer (MODIS) measures of live fuel moisture and fuel condition in a shrubland ecosystem in southern California. J Geophys Res 111:G04S02 CrossRef
    53. Schneider P, Roberts DA, Kyriakidis PC (2008) A VARI-based relative greenness from MODIS data for computing the fire potential index. Remote Sens Environ 112:1151-167 CrossRef
    54. Sharples JJ, McRae RHD, Weber RO (2010) Wind characteristics over complex terrain with implications for bushfire risk management. Environ Modell Softw 25:1099-120 CrossRef
    55. Stolle F, Chomitz KM, Lambin EF, Tomich TP (2003) Land use and vegetation fires in Jambi Province, Sumatra, Indonesia. For Ecol Manag 179:277-92 CrossRef
    56. Stow D, Niphadkar M, Kaiser J (2005) MODIS-derived visible atmospherically resistant index for monitoring chaparral moisture content. Int J Remote Sens 26:3867-873 CrossRef
    57. Vàzquez A, Pèrez B, Fernandèz-Gonzàlez F, Moreno JM (2002) Recent fire regime characteristics and potential natural vegetation relationships in Spain. J Veg Sci 13:663-76 CrossRef
    58. Verbesselt J, Somers B, Lhermitte S, Jonckheere I, van Aardt J, Coppin P (2007) Monitoring herbaceous fuel moisture content with SPOT VEGETATION time-series for fire risk prediction in savanna ecosystems. Remote Sens Environ 108:357-68 CrossRef
    59. Vidal A, Devaux-Ros C (1995) Evaluating forest fire hazard with a Landsat TM derived water stress index. Agr For Meteorol 77:207-24 CrossRef
    60. Zhang X, Friedl MA, Schaaf CB, Strahler AH, Hodges JCF, Gao F, Reed BC, Huete A (2003) Monitoring vegetation phenology using MODIS. Remote Sens Environ 84:471-75 CrossRef
  • 作者单位:Antonella De Angelis (1)
    Sofia Bajocco (2)
    Carlo Ricotta (1)

    1. Department of Environmental Biology, University of Rome “La Sapienza- Piazzale Aldo Moro 5, 00185, Rome, Italy
    2. National Council for Research in Agriculture, Unit of Climatology and Meteorology Applied to Agriculture (CRA-CMA), Via del Caravita 7a, 00186, Rome, Italy
  • ISSN:1572-9761
文摘
Fuel characteristics play an important role in driving fire ignition and propagation; at the landscape scale fuel availability and flammability are closely related to vegetation phenology. In this view, the NDVI profiles obtained from high temporal resolution satellites, like MODIS, are an effective tool for monitoring the coarse-scale vegetation seasonal timing. The aim of this paper is twofold: our first objective consists in classifying by means of multitemporal NDVI profiles the coarse-scale vegetation of Sardinia into ‘phenological clusters-in which fire incidence is higher (preferred) or lower (avoided) than expected from a random null model. If fires would burn unselectively, then fires would occur randomly across the landscape such that the number of fires in a given phenological cluster would be nearly proportional to the relative area of that land cover type in the analyzed landscape. Actually, certain vegetation types are more fire-prone than others. That is, they are burnt more frequently than others. In this framework, our second objective consists in investigating the temporal parameters of the remotely sensed NDVI profiles that best characterize the observed phenology–fire selectivity relationship. The results obtained show a good association between the NDVI temporal profiles and the spatio-temporal wildfire distribution in Sardinia, emphasizing the role of bioclimatic timing in driving fire regime characteristics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700