Using the canary genome to decipher the evolution of hormone-sensitive gene regulation in seasonal singing birds
详细信息    查看全文
  • 作者:Carolina Frankl-Vilches (1)
    Heiner Kuhl (1) (2)
    Martin Werber (2)
    Sven Klages (2)
    Martin Kerick (2)
    Antje Bakker (1)
    Edivaldo HC de Oliveira (3)
    Christina Reusch (1)
    Floriana Capuano (4)
    Jakob Vowinckel (4)
    Stefan Leitner (1)
    Markus Ralser (4) (5)
    Bernd Timmermann (2)
    Manfred Gahr (1)

    1. Department of Behavioral Neurobiology
    ; Max Planck Institute for Ornithology ; 82319 ; Seewiesen ; Germany
    2. Max Planck Institute for Molecular Genetics
    ; Sequencing Core Facility ; 14195 ; Berlin ; Germany
    3. Laborat贸rio de Cultura de Tecidos e Citogen茅tica
    ; SAMAM ; Instituto Evandro Chagas ; Ananindeua ; Par谩 ; and Faculdade de Ci锚ncias Naturais (ICEN) ; Universidade Federal do Par谩 ; Bel茅m ; 66075-110 ; Brazil
    4. Department of Biochemistry and Cambridge Systems Biology Centre
    ; 80 Tennis Court Road ; Cambridge ; CB2 1GA ; UK
    5. Division of Physiology and Metabolism
    ; MRC National Institute for Medical Research ; the Ridgeway ; Mill Hill ; London ; NW7 1AA ; UK
  • 刊名:Genome Biology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 全文大小:1,828 KB
  • 参考文献:Historia animalium. Harvard University Press, London; Cambridge: MA: Heinemann
    1. Arnold, AP (1975) The effects of castration on song development in zebra finches (Poephila guttata). J Exp Zool 191: pp. 261-78
    2. Heid, P, G眉ttinger, HR, Pr枚ve, E (1985) The influence of castration and testosterone replacement on the song architecture of canaries (Serinus canaria). Z Tierpsychol 69: pp. 224-36
    3. Kunc, HP, Foerster, K, Vermeirssen, ELM, Kempenaers, B (2006) Experimentally elevated plasma testosterone levels Do Not influence singing behaviour of male blue tits (Parus caeruleus) during the early breeding season. Ethology 112: pp. 984-92
    4. Maney, DL, Lange, HS, Raees, MQ, Reid, AE, Sanford, SE (2009) Behavioral phenotypes persist after gonadal steroid manipulation in white-throated sparrows. Horm Behav 55: pp. 113-20
    5. Pinxten, R, Ridder, E, Balthazart, J, Eens, M (2002) Context-dependent effects of castration and testosterone treatment on song in male European starlings. Horm Behav 42: pp. 307-18
    6. Der, PE (1974) Einflu脽 von Kastration und Testosteronsubstitution auf das Sexualverhalten m盲nnlicher Zebrafinken (Taeniopygia guttata castanotis Gould). J Ornithol 115: pp. 338-47
    7. Prove, E, Immelmann, K (1982) Behavioral and hormonal responses of male zebra finches to antiandrogens. Horm Behav 16: pp. 121-31
    8. Strand, CR, Ross, MS, Weiss, SL, Deviche, P (2008) Testosterone and social context affect singing behavior but not song control region volumes in adult male songbirds in the fall. Behav Processes 78: pp. 29-37
    9. Hout, AJ, Pinxten, R, Darras, VM, Eens, M (2012) Testosterone increases repertoire size in an open-ended learner: an experimental study using adult male European starlings (Sturnus vulgaris). Horm Behav 62: pp. 563-8
    10. Walters, MJ, Collado, D, Harding, CF (1991) Oestrogenic modulation of singing in male zebra finches: differential effects on directed and undirected songs. Anim Behav 42: pp. 445-52
    11. Leitner, S, Voigt, C, Garcia-Segura, LM, Hof, T, Gahr, M (2001) Seasonal activation and inactivation of song motor memories in wild canaries is not reflected in neuroanatomical changes of forebrain song areas. Horm Behav 40: pp. 160-8
    12. Voigt, C, Leitner, S, Gahr, M (2006) Repertoire and structure of duet and solo songs in cooperatively breeding white-browed sparrow weavers. Behaviour 143: pp. 159-82
    13. Gahr, M (2014) How hormone-sensitive are bird songs and what are the underlying mechanisms?. Acta Acustica united with Acustica 100: pp. 705-18
    14. Nottebohm, F, Nottebohm, ME, Crane, LA, Wingfield, JC (1987) Seasonal changes in gonadal hormone levels of adult male canaries and their relation to song. Behav Neural Biol 47: pp. 197-211
    15. Voigt, C, Leitner, S (2008) Seasonality in song behaviour revisited: Seasonal and annual variants and invariants in the song of the domesticated canary (Serinus canaria). Horm Behav 54: pp. 373-8
    16. G眉ttinger, HR (1985) Consequences of domestication on the song structures in the canary. Behaviour 94: pp. 254-78
    17. Fusani, L, Metzdorf, R, Hutchison, JB, Gahr, M (2003) Aromatase inhibition affects testosterone-induced masculinization of song and the neural song system in female canaries. J Neurobiol 54: pp. 370-9
    18. Vallet, E, Kreutzer, M (1995) Female canaries are sexually responsive to special song phrases. Anim Behav 49: pp. 1603-10
    19. Gahr, M, Metzdorf, R (1997) Distribution and dynamics in the expression of androgen and estrogen receptors in vocal control systems of songbirds. Brain Res Bull 44: pp. 509-17
    20. Gahr, M, Flugge, G, Guttinger, HR (1987) Immunocytochemical localization of estrogen-binding neurons in the songbird brain. Brain Res 402: pp. 173-7
    21. Gahr, M (1990) Localization of androgen receptors and estrogen receptors in the same cells of the songbird brain. Proc Natl Acad Sci U S A 87: pp. 9445-8
    22. Ball, GF, Bernard, DJ, Foidart, A, Lakaye, B, Balthazart, J (1999) Steroid sensitive sites in the avian brain: does the distribution of the estrogen receptor alpha and beta types provide insight into their function?. Brain Behav Evol 54: pp. 28-40
    23. Nottebohm, F, Stokes, TM, Leonard, CM (1976) Central control of song in the canary. Serinus canarius. J Comp Neurol 165: pp. 457
    24. Wild, JM (2004) Functional neuroanatomy of the sensorimotor control of singing. Ann N Y Acad Sci 1016: pp. 438-62
    25. Gahr, M (1990) Delineation of a brain nucleus: comparisons of cytochemical, hodological, and cytoarchitectural views of the song control nucleus HVc of the adult canary. J Comp Neurol 294: pp. 30-6
    26. Nottebohm, F (1981) A brain for all seasons: cyclical anatomical changes in song control nuclei of the canary brain. Science 214: pp. 1368
    27. Kirn, JR, Alvarez-Buylla, A, Nottebohm, F (1991) Production and survival of projection neurons in a forebrain vocal center of adult male canaries. J Neurosci 11: pp. 1756
    28. Sartor, JJ, Ball, GF (2005) Social suppression of song is associated with a reduction in volume of a song-control nucleus in European starlings (Sturnus vulgaris). Behav Neurosci 119: pp. 233-44
    29. Goldman, SA, Nottebohm, F (1983) Neuronal production, migration, and differentiation in a vocal control nucleus in the adult female canary brain. Proc Natl Acad Sci U S A 80: pp. 2390
    30. Gnerre, S, Maccallum, I, Przybylski, D, Ribeiro, FJ, Burton, JN, Walker, BJ (2011) High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A 108: pp. 1513-8
    31. McEwen, BS, Davis, PG, Parsons, B, Pfaff, DW (1979) The brain as a target for steroid hormone action. Annu Rev Neurosci 2: pp. 65-112
    32. Arnold, AP, Nottebohm, F, Pfaff, DW (1976) Hormone concentrating cells in vocal control and other areas of the brain of the zebra finch (Poephila guttata). J Comp Neurol 165: pp. 487-511
    33. Mangelsdorf, DJ, Thummel, C, Beato, M, Herrlich, P, Schutz, G, Umesono, K (1995) The nuclear receptor superfamily: the second decade. Cell 83: pp. 835-9
    34. Gahr, M, Guttinger, HR, Kroodsma, DE (1993) Estrogen receptors in the avian brain: survey reveals general distribution and forebrain areas unique to songbirds. J Comp Neurol 327: pp. 112-22
    35. Drnevich, J, Replogle, KL, Lovell, P, Hahn, TP, Johnson, F, Mast, TG (2012) Impact of experience-dependent and -independent factors on gene expression in songbird brain. Proc Natl Acad Sci U S A 109: pp. 17245-52
    36. Thompson, CK, Meitzen, J, Replogle, K, Drnevich, J, Lent, KL, Wissman, AM (2012) Seasonal changes in patterns of gene expression in avian song control brain regions. PLoS One 7: pp. e35119
    Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432: pp. 695-716
    37. Dalloul, RA, Long, JA, Zimin, AV, Aslam, L, Beal, K, Blomberg, A (2010) Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): genome assembly and analysis. PLoS Biol 8: pp. e1000475
    38. Huang, Y, Li, Y, Burt, DW, Chen, H, Zhang, Y, Qian, W (2013) The duck genome and transcriptome provide insight into an avian influenza virus reservoir species. Nat Genet 45: pp. 776-83
    39. Warren, WC, Clayton, DF, Ellegren, H, Arnold, AP, Hillier, LW, Kunstner, A (2010) The genome of a songbird. Nature 464: pp. 757-62
    40. Qu, Y, Zhao, H, Han, N, Zhou, G, Song, G, Gao, B (2013) Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau. Nat Commun 4: pp. 2071
    41. Poelstra, JW, Vijay, N, Bossu, CM, Lantz, H, Ryll, B, Muller, I (2014) The genomic landscape underlying phenotypic integrity in the face of gene flow in crows. Science 344: pp. 1410-4
    42. Suh, A, Paus, M, Kiefmann, M, Churakov, G, Franke, FA, Brosius, J (2011) Mesozoic retroposons reveal parrots as the closest living relatives of passerine birds. Nat Commun 2: pp. 443
    43. Zhang G, Parker P, Li B, Li H, Wang J. The genome of Darwin鈥檚 Finch (Geospiza fortis). GigaScience. 2012. http://dx.doi.org/10.5524/100040.
    44. Romanov, MN, Dodgson, JB, Gonser, RA, Tuttle, EM (2011) Comparative BAC-based mapping in the white-throated sparrow, a novel behavioral genomics model, using interspecies overgo hybridization. BMC Res Notes 4: pp. 211
    45. Hackett, SJ, Kimball, RT, Reddy, S, Bowie, RC, Braun, EL, Braun, MJ (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320: pp. 1763-8
    46. 48.Genome sequence of the canary (Serinus canaria) http://www.ebi.ac.uk/ena/data/search?query=GCA_000534875.
    47. Ayers, KL, Davidson, NM, Demiyah, D, Roeszler, KN, Grutzner, F, Sinclair, AH (2013) RNA sequencing reveals sexually dimorphic gene expression before gonadal differentiation in chicken and allows comprehensive annotation of the W-chromosome. Genome Biol 14: pp. R26
    48. Auer, H, Mayr, B, Lambrou, M, Schleger, W (1987) An extended chicken karyotype, including the NOR chromosome. Cytogenet Cell Genet 45: pp. 218-21
    49. Fritschi, S, Stranzinger, G (1985) Fluorescent chromosome banding in inbred chicken: quinacrine bands, sequential chromomycin and Dapi bands. Theor Appl Genet 71: pp. 408-12
    50. Kaelbling, M, Fechheimer, NS (1983) Synaptonemal complexes and the chromosome complement of domestic fowl, Gallus domesticus. Cytogenet Cell Genet 35: pp. 87-92
    51. Leon FA, P, Li, Y, Weng, Z (1992) Early and late replicative chromosomal banding patterns of Gallus domesticus. J Hered 83: pp. 36-42
    52. Ohno, S, Stenius, C, Christian, LC, Becak, W, Becak, ML (1964) Chromosomal uniformity in the avian subclass carinatae. Chromosoma 15: pp. 280-8
    53. Itoh, Y, Arnold, AP (2005) Chromosomal polymorphism and comparative painting analysis in the zebra finch. Chromosome Res 13: pp. 47-56
    54. Kent, WJ, Sugnet, CW, Furey, TS, Roskin, KM, Pringle, TH, Zahler, AM (2002) The human genome browser at UCSC. Genome Res 12: pp. 996-1006
    55. Canary Genome Browser. http://public-genomes-ngs.molgen.mpg.de.
    56. Hilliard Austin, T, Miller Julie, E, Fraley, ER, Horvath, S, White, SA (2012) Molecular microcircuitry underlies functional specification in a basal ganglia circuit dedicated to vocal learning. Neuron 73: pp. 537-52
    57. Kato, M, Okanoya, K (2010) Molecular characterization of the song control nucleus HVC in Bengalese finch brain. Brain Res 1360: pp. 56-76
    58. Li, X, Wang, XJ, Tannenhauser, J, Podell, S, Mukherjee, P, Hertel, M (2007) Genomic resources for songbird research and their use in characterizing gene expression during brain development. Proc Natl Acad Sci U S A 104: pp. 6834-9
    59. Lovell, PV, Clayton, DF, Replogle, KL, Mello, CV (2008) Birdsong 鈥渢ranscriptomics鈥? neurochemical specializations of the oscine song system. PLoS One 3: pp. e3440
    60. Stevenson, TJ, Replogle, K, Drnevich, J, Clayton, DF, Ball, GF (2012) High throughput analysis reveals dissociable gene expression profiles in two independent neural systems involved in the regulation of social behavior. BMC Neurosci 13: pp. 126
    61. Bindea, G, Mlecnik, B, Hackl, H, Charoentong, P, Tosolini, M, Kirilovsky, A (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25: pp. 1091-3
    62. Hartog, TE, Dittrich, F, Pieneman, AW, Jansen, RF, Frankl-Vilches, C, Lessmann, V (2009) Brain-derived neurotrophic factor signaling in the HVC is required for testosterone-induced song of female canaries. J Neurosci 29: pp. 15511-9
    63. Balthazart, J, Gahr, M, Surlemont, C (1989) Distribution of estrogen receptors in the brain of the Japanese quail: an immunocytochemical study. Brain Res 501: pp. 205-14
    64. Fusani, L, Hof, T, Hutchison, JB, Gahr, M (2000) Seasonal expression of androgen receptors, estrogen receptors, and aromatase in the canary brain in relation to circulating androgens and estrogens. J Neurobiol 43: pp. 254-68
    65. Zhang, C, Gao, J, Zhang, H, Sun, L, Peng, G (2012) Robo2-slit and Dcc-netrin1 coordinate neuron axonal pathfinding within the embryonic axon tracts. J Neurosci 32: pp. 12589-602
    66. Byun, J, Kim, BT, Kim, YT, Jiao, Z, Hur, EM, Zhou, FQ (2012) Slit2 inactivates GSK3beta to signal neurite outgrowth inhibition. PLoS One 7: pp. e51895
    67. Ren, D (2011) Sodium leak channels in neuronal excitability and rhythmic behaviors. Neuron 72: pp. 899-911
    68. Chen, L, Fu, Y, Ren, M, Xiao, B, Rubin, CS (2011) A RasGRP, C. elegans RGEF-1b, couples external stimuli to behavior by activating LET-60 (Ras) in sensory neurons. Neuron 70: pp. 51-65
    69. Kressler, D, Schreiber, SN, Knutti, D, Kralli, A (2002) The PGC-1-related protein PERC is a selective coactivator of estrogen receptor alpha. J Biol Chem 277: pp. 13918-25
    70. Li, X, Zhu, C, Tu, WH, Yang, N, Qin, H, Sun, Z (2011) ZMIZ1 preferably enhances the transcriptional activity of androgen receptor with short polyglutamine tract. PLoS One 6: pp. e25040
    71. Teramitsu, I, Kudo, LC, London, SE, Geschwind, DH, White, SA (2004) Parallel FoxP1 and FoxP2 expression in songbird and human brain predicts functional interaction. J Neurosci 24: pp. 3152-63
    72. Chen, Q, Heston, JB, Burkett, ZD, White, SA (2013) Expression analysis of the speech-related genes FoxP1 and FoxP2 and their relation to singing behavior in two songbird species. J Exp Biol 216: pp. 3682-92
    73. Schwanhausser, B, Busse, D, Li, N, Dittmar, G, Schuchhardt, J, Wolf, J (2011) Global quantification of mammalian gene expression control. Nature 473: pp. 337-42
    74. Gillet, LC, Navarro, P, Tate, S, Rost, H, Selevsek, N, Reiter, L (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11: pp. O111 016717
    75. Vowinckel, J, Capuano, F, Campbell, K, Deery, MJ, Lilley, KS, Ralser, M (2013) The beauty of being (label)-free: sample preparation methods for SWATH-MS and next-generation targeted proteomics. F1000 Res 2: pp. 272
    76. Kushner, PJ, Agard, DA, Greene, GL, Scanlan, TS, Shiau, AK, Uht, RM (2000) Estrogen receptor pathways to AP-1. J Steroid Biochem Mol Biol 74: pp. 311-7
    77. Porter, W, Saville, B, Hoivik, D, Safe, S (1997) Functional synergy between the transcription factor Sp1 and the estrogen receptor. Mol Endocrinol 11: pp. 1569-80
    78. Kim, J, Larkin, DM, Cai, AQ, Zhang, Y, Ge, RL (2013) Reference-assisted chromosome assembly. Proc Natl Acad Sci U S A 110: pp. 1785-90
    79. Kong, L, Lovell, PV, Heger, A, Mello, CV, Ponting, CP (2010) Accelerated evolution of PAK3- and PIM1-like kinase gene families in the zebra finch. Taeniopygia guttata. Mol Biol Evol 27: pp. 1923-34
    80. Prufer, K, Munch, K, Hellmann, I, Akagi, K, Miller, JR, Walenz, B (2012) The bonobo genome compared with the chimpanzee and human genomes. Nature 486: pp. 527-31
    81. Balthazart, J, Foidart, A, Wilson, EM, Ball, GF (1992) Immunocytochemical localization of androgen receptors in the male songbird and quail brain. J Comp Neurol 317: pp. 407-20
    82. Nottebohm, F (1980) Testosterone triggers growth of brain vocal control nuclei in adult female canaries. Brain Res 189: pp. 429-36
    83. Sartor, JJ, Balthazart, J, Ball, GF (2005) Coordinated and dissociated effects of testosterone on singing behavior and song control nuclei in canaries (Serinus canaria). Horm Behav 47: pp. 467-76
    84. DeVoogd, T, Nottebohm, F (1981) Gonadal hormones induce dendritic growth in the adult avian brain. Science 214: pp. 202-4
    85. Jansen, R, Metzdorf, R, Roest, M, Fusani, L, Maat, A, Gahr, M (2005) Melatonin affects the temporal organization of the song of the zebra finch. FASEB J 19: pp. 848-50
    86. DeVoogd, TJ (1991) Endocrine mdulation of the development and adult function of the avian song system. Psychoneuroendocrinol 16: pp. 41-66
    87. Fusani, L, Gahr, M (2006) Hormonal influence on song structure and organization: the role of estrogen. Neuroscience 138: pp. 939-46
    88. Meitzen, J, Moore, IT, Lent, K, Brenowitz, EA, Perkel, DJ (2007) Steroid hormones act transsynaptically within the forebrain to regulate neuronal phenotype and song stereotypy. J Neurosci 27: pp. 12045-57
    89. Fusani, L, Hof, T, Hutchison, JB (2003) Season-related changes in circulating androgen, brain aromatase, and perch-calling in male ring doves. Gen Comp Endocrinol 130: pp. 142-7
    90. Metzdorf, R, Gahr, M, Fusani, L (1999) Distribution of aromatase, estrogen receptor, and androgen receptor mRNA in the forebrain of songbirds and nonsongbirds. J Comp Neurol 407: pp. 115-29
    91. Vellema, M, Hertel, M, Urbanus, SL, Linden, A, Gahr, M (2014) Evaluating the predictive value of doublecortin as a marker for adult neurogenesis in canaries (Serinus canaria). J Comp Neurol 522: pp. 1299-315
    92. Lin, Z, Reierstad, S, Huang, CC, Bulun, SE (2007) Novel estrogen receptor-alpha binding sites and estradiol target genes identified by chromatin immunoprecipitation cloning in breast cancer. Cancer Res 67: pp. 5017-24
    93. Nott, SL, Huang, Y, Li, X, Fluharty, BR, Qiu, X, Welshons, WV (2009) Genomic responses from the estrogen-responsive element-dependent signaling pathway mediated by estrogen receptor alpha are required to elicit cellular alterations. J Biol Chem 284: pp. 15277-88
    94. Stender, JD, Kim, K, Charn, TH, Komm, B, Chang, KC, Kraus, WL (2010) Genome-wide analysis of estrogen receptor alpha DNA binding and tethering mechanisms identifies Runx1 as a novel tethering factor in receptor-mediated transcriptional activation. Mol Cell Biol 30: pp. 3943-55
    95. G眉ttinger, H, Fuchs, H, Schwager, G (1990) Das Gesangslernen und seine Beziehung zur Gehirnentwicklung beim Kanarienvogel (Serinus canaria). Die Vogelwarte 35: pp. 287-300
    96. Vellema, M, Ko, MC, Frankl-Vilches, C, Gahr, M (2014) What makes a marker a good marker? Commentary on Balthazart J and Ball G (2014): Doublecortin is a highly valuable endogenous marker of adult neurogenesis in canaries. Brain Behav Evol 84:1鈥?. Brain Behav Evol 84: pp. 5-7
    97. Brenowitz, EA (1991) Altered perception of species-specific song by female birds after lesions of a forebrain nucleus. Science 251: pp. 303-5
    98. Negro, C, Kreutzer, M, Gahr, M (2000) Sexually stimulating signals of canary (Serinus canaria) songs: evidence for a female-specific auditory representation in the HVc nucleus during the breeding season. Behav Neurosci 114: pp. 526-42
    99. Young, LJ, Wang, Z (2004) The neurobiology of pair bonding. Nat Neurosci 7: pp. 1048-54
    100. Bentley, DR, Balasubramanian, S, Swerdlow, HP, Smith, GP, Milton, J, Brown, CG (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456: pp. 53-9
    101. Margulies, M, Egholm, M, Altman, WE, Attiya, S, Bader, JS, Bemben, LA (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: pp. 376-80
    102. Li, R, Zhu, H, Ruan, J, Qian, W, Fang, X, Shi, Z (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20: pp. 265-72
    103. Miller, JR, Delcher, AL, Koren, S, Venter, E, Walenz, BP, Brownley, A (2008) Aggressive assembly of pyrosequencing reads with mates. Bioinformatics 24: pp. 2818-24
    104. Boetzer, M, Henkel, CV, Jansen, HJ, Butler, D, Pirovano, W (2011) Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27: pp. 578-9
    105. Kie艂basa, SM, Wan, R, Sato, K, Horton, P, Frith, MC (2011) Adaptive seeds tame genomic sequence comparison. Genome Res 21: pp. 487-93
    106. Reiner, A, Perkel, DJ, Mello, CV, Jarvis, ED (2004) Songbirds and the revised avian brain nomenclature. Ann N Y Acad Sci 1016: pp. 77-108
    107. Grabherr, MG, Russell, P, Meyer, M, Mauceli, E, Alfoldi, J, Palma, F (2010) Genome-wide synteny through highly sensitive sequence alignment: Satsuma. Bioinformatics 26: pp. 1145-51
    108. Saski, M, Ikechi, T, Makino, S (1968) A feather pulp culture technique for avian chromosomes, with notes on the chromosomes of the peafowl and the ostrich. Experientia 24: pp. 1292-3
    109. Gotoh, O (2008) A space-efficient and accurate method for mapping and aligning cDNA sequences onto genomic sequence. Nucleic Acids Res 36: pp. 2630-8
    110. Stanke, M, Diekhans, M, Baertsch, R, Haussler, D (2008) Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24: pp. 637-44
    111. Conesa, A, Gotz, S, Garcia-Gomez, JM, Terol, J, Talon, M, Robles, M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: pp. 3674-6
    112. RepeatMasker. http://www.repeatmasker.org.
    113. Trapnell, C, Roberts, A, Goff, L, Pertea, G, Kim, D, Kelley, DR (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7: pp. 562-78
    114. Altschul, SF, Gish, W, Miller, W, Myers, EW, Lipman, DJ (1990) Basic local alignment search tool. J Mol Biol 215: pp. 403-10
    115. Anders, S, Huber, W (2010) Differential expression analysis for sequence count data. Genome Biol 11: pp. R106
    116. Anders, S, Reyes, A, Huber, W (2012) Detecting differential usage of exons from RNA-seq data. Genome Res 22: pp. 2008-17
    117. genomatix. http://www.genomatix.de.
    118. Cohen, CD, Lindenmeyer, MT, Eichinger, F, Hahn, A, Seifert, M, Moll, AG (2008) Improved elucidation of biological processes linked to diabetic nephropathy by single probe-based microarray data analysis. PLoS One 3: pp. e2937
    119. Edgar, R, Domrachev, M, Lash, AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30: pp. 207-10
    120. Expression data from Serinus canaria HVC, RA and Entopallium http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50070.
    121. Primer3web. http://primer3.wi.mit.edu.
    122. Shevchenko, G, Musunuri, S, Wetterhall, M, Bergquist, J (2012) Comparison of extraction methods for the comprehensive analysis of mouse brain proteome using shotgun-based mass spectrometry. J Proteome Res 11: pp. 2441-51
    123. MacLean, B, Tomazela, DM, Shulman, N, Chambers, M, Finney, GL, Frewen, B (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26: pp. 966-8
    124. Cartharius, K, Frech, K, Grote, K, Klocke, B, Haltmeier, M, Klingenhoff, A (2005) MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21: pp. 2933-42
    125. Michelhaugh, SK, Lipovich, L, Blythe, J, Jia, H, Kapatos, G, Bannon, MJ (2011) Mining Affymetrix microarray data for long non-coding RNAs: altered expression in the nucleus accumbens of heroin abusers. J Neurochem 116: pp. 459-66
    126. Sharad, S, Srivastava, A, Ravulapalli, S, Parker, P, Chen, Y, Li, H (2011) Prostate cancer gene expression signature of patients with high body mass index. Prostate Cancer Prostatic Dis 14: pp. 22-9
    127. Voigt, C, Gahr, M, Leitner, S, Lutermann, H, Bennett, N (2014) Breeding status and social environment differentially affect the expression of sex steroid receptor and aromatase mRNA in the brain of female Damaraland mole-rats. Front Zool 11: pp. 38
    128. Cline, MS, Smoot, M, Cerami, E, Kuchinsky, A, Landys, N, Workman, C (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2: pp. 2366-82
    129. Saito, R, Smoot, ME, Ono, K, Ruscheinski, J, Wang, PL, Lotia, S (2012) A travel guide to Cytoscape plugins. Nat Methods 9: pp. 1069-76
    130. Shannon, P, Markiel, A, Ozier, O, Baliga, NS, Wang, JT, Ramage, D (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13: pp. 2498-504
    131. Smoot, ME, Ono, K, Ruscheinski, J, Wang, PL (2011) Ideker. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27: pp. 431-2
    132. ENA: Genome sequence of the canary (Serinus canaria). http://www.ebi.ac.uk/ena/data/view/PRJEB1766
    133. European Nucleotide Archive. http://www.ebi.ac.uk/ena/.
    134. Transcriptome sequencing of Serinus Canaria and Taeniopygia guttata brain tissues. http://www.ebi.ac.uk/ena/data/view/PRJEB4463
    135. Gene expression Omnibus. http://www.ncbi.nlm.nih.gov/geo/.
  • 刊物主题:Animal Genetics and Genomics; Human Genetics; Plant Genetics & Genomics; Microbial Genetics and Genomics; Fungus Genetics; Bioinformatics;
  • 出版者:BioMed Central
  • ISSN:1465-6906
文摘
Background While the song of all songbirds is controlled by the same neural circuit, the hormone dependence of singing behavior varies greatly between species. For this reason, songbirds are ideal organisms to study ultimate and proximate mechanisms of hormone-dependent behavior and neuronal plasticity. Results We present the high quality assembly and annotation of a female 1.2-Gbp canary genome. Whole genome alignments between the canary and 13 genomes throughout the bird taxa show a much-conserved synteny, whereas at the single-base resolution there are considerable species differences. These differences impact small sequence motifs like transcription factor binding sites such as estrogen response elements and androgen response elements. To relate these species-specific response elements to the hormone-sensitivity of the canary singing behavior, we identify seasonal testosterone-sensitive transcriptomes of major song-related brain regions, HVC and RA, and find the seasonal gene networks related to neuronal differentiation only in the HVC. Testosterone-sensitive up-regulated gene networks of HVC of singing males concerned neuronal differentiation. Among the testosterone-regulated genes of canary HVC, 20% lack estrogen response elements and 4 to 8% lack androgen response elements in orthologous promoters in the zebra finch. Conclusions The canary genome sequence and complementary expression analysis reveal intra-regional evolutionary changes in a multi-regional neural circuit controlling seasonal singing behavior and identify gene evolution related to the hormone-sensitivity of this seasonal singing behavior. Such genes that are testosterone- and estrogen-sensitive specifically in the canary and that are involved in rewiring of neurons might be crucial for seasonal re-differentiation of HVC underlying seasonal song patterning.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700