Adiabatic shear banding and cracking phenomena occurring during cold-forging simulation tests of plain carbon steel wire rods by using a split Hopkinson’s pressure bar
详细信息    查看全文
  • 作者:Minju Kang ; Jaeyeong Park ; Seok Su Sohn ; Hyunmin Kim…
  • 关键词:forging ; adiabatic shear banding ; strain rate ; split Hopkinson’s pressure bar ; impact test
  • 刊名:Metals and Materials International
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:21
  • 期:6
  • 页码:991-999
  • 全文大小:1,044 KB
  • 参考文献:1.A. Iwama and I. Nomura, U. S. Patent 5, 362, 338 (1994).
    2.H. Kim, M. Kang, C. M. Bae, H. S. Kim, and S. Lee, Metall. Mater. Trans. A 45A, 1294 (2014).CrossRef
    3.K.-H. Kim, S.-D. Park, J.-H. Kim, and C.-M. Bae, Met. Mater. Int. 18, 917 (2012).CrossRef
    4.B. Hwang, T.-H. Lee, J.-H. Shin, and J.-W. Lee, Korean J. Met. Mater. 52, 21 (2014).CrossRef
    5.A. Marchand and J. Duffy, J. Mech. Phys. Solids 36, 251 (1988).CrossRef
    6.S. N. Medyanik, W. K. Liu, and S. Li, J. Mech. Phys. Solids 55, 1439 (2007).CrossRef
    7.R. G. O’Donnell and R. L. Woodward, J. Mater. Sci. 23, 3578 (1988).CrossRef
    8.D.-K Kim, S. Y. Kang, S. Lee, and K. J. Lee, Metall. Mater. Trans. A 30A, 81 (1999).CrossRef
    9.H. L. Park, K. C. Jin, S. J. Baek, and C. S. Choi, J. Kor. Inst. Met. Mater. 29, 220 (1991)
    10.K. Cho, Y. C. Chi, and J. Duffy, Metall. Trans. A 21A, 1161 (1990).CrossRef
    11.P. R. Guduru, A. J. Rosakis, and G. Ravichandran, Mech. Mater. 33, 371 (2001).CrossRef
    12.Y. Bai and B. Dodd, Adiabatic Shear Localization-Occurrence, Theories, and Applications, p.10, Pregamon Press, New York (1992).
    13.J. L. Sun, P. W. Trimby, F. K. Yan, X. Z. Liao, N. R. Tao, and J. T. Wang, Acta Mater. 79, 47 (2014).CrossRef
    14.A. Sabih and J. A. Nemes, J. Mater. Process. Tech. 209, 4292 (2009).CrossRef
    15.M. S. Salehi, N. Anjabin, and H. S. Kim, Met. Mater. Int. 20, 825 (2014).CrossRef
    16.K. Cho, S. Lee, J. Duffy, and S. R. Nutt, Acta Metall. 41, 923 (1993).CrossRef
    17.H. S. Kim, S.-H. Joo, and H. J. Jeong, Korean J. Met. Mater. 52, 87 (2014).CrossRef
    18.E. D. H. Davies and S. C. Hunter, J. Mech. Phys. Solids 11, 155 (1963).CrossRef
    19.W. Chen and B. Song, Split Hopkinson (Kolsky) Bar-Design, Testing, and Applications, p.7, Springer, New York (2011).CrossRef
    20.R. C. Creese, Introduction to Manufacturing Processes and Materials, pp.36-7, Marcel Dekker, Inc., New York (1999)
    21.B. Dodd and Y. Bai, Adiabatic Shear Localization-Frontiers and Advances, pp.111-71, Elsevier, Amsterdam (2012).
    22.T. Weerasooriya and J. Clayton, Proc. 2006 Int. Conf. on Tungsten, Refractory & Hardmetals VI, pp.1-, Metal Powder Industries Federation, Orlando, Florida (2006).
    23.Z. Xiaoqing, L. Shukui, L. Jinxu, W. Yingchun, and W. Xing, Mater. Sci. Eng. A 527, 4881 (2010).CrossRef
    24.G. R. Johnson and J. M. Hoegfeldt, U. S. Lindholm, A. Nagy, Trans. ASME 105, 42 (1983).
    25.Y. P. Song, W. K. Wang, D. S. Gao, E. Y. Yoon, D. J. Lee, and H. S. Kim, Met. Mater. Int. 20, 445 (2014).CrossRef
    26.C. L. Wittman, M. A. Meyers, and H.-R. Pak, Metall. Trans. A 21A, 707 (1990).CrossRef
    27.S. Lee, K.-M. Cho, K. C. Kim, and W. B. Choi, Metall. Trans. A 24A, 895 (1993).CrossRef
    28.K. T. Ramesh and R. S. Coates, Metall. Trans. A 23A, 2625 (1992).CrossRef
    29.R. L. Woodward, N. J. Baldwin, I. Burch, and B. J. Baxter, Metall. Trans. A 16A, 2031 (1985).CrossRef
    30.J. Lankford, A. Bose, and H. Couque, High Strain rate Behavior of Refractory Metals and Alloys (eds. R. Asfahani, E. Chen, and A. Crowson), p.267, TMS, Cincinnati, OH (1992).
    31.R. W. K. Honeycombe, Steels-Microstructure and Properties, Third ed., p.63, Edward Arnold, London (2006).
    32.S. Boakye-Yiadom and M. N. Bassim, Mater. Sci. Eng. A 528, 8700 (2011).CrossRef
    33.L. Tang, Z. Chen, C. Zhan, X. Yang, C. Liu, and H. Cai, Mater. Charact. 64, 21 (2012).CrossRef
    34.Y. Xu, J. H. Zhang, Y. L. Bai, and M. A. Mayers, Metall. Mater. Trans. A 39A, 811 (2008).CrossRef
    35.J. H. Beatty, L. W. Meyer, M. A. Meyers, and S. Nemat-Nasser, Shock-Wave and High-Strain-Rate Phenomena (eds. M. A Meyers, L. E. Murr, K. P. Staudhammer), pp.645-56, Marcel Dekker, NewYork (1992).
    36.S. P. Timothy, Acta Metall. 35, 301 (1987).CrossRef
    37.H.-S. Kim and Y.-T. Im, Trans. ASME 121, 336 (1999).CrossRef
  • 作者单位:Minju Kang (1)
    Jaeyeong Park (1)
    Seok Su Sohn (1)
    Hyunmin Kim (2)
    Kwan-Ho Kim (3)
    Sunghak Lee (1)

    1. Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang, 790-784, Korea
    2. School of Engineering, Brown University, Providence, RI, 02912, USA
    3. Technical Research Laboratories, POSCO, 1 Goedong-dong Nam-gu, Pohang, Gyeongbuk, 790-785, Korea
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Metallic Materials
    Operating Procedures and Materials Treatment
  • 出版者:The Korean Institute of Metals and Materials, co-published with Springer Netherlands
  • ISSN:2005-4149
文摘
Adiabatic shear banding and cracking phenomena occurring during cold forging of plain carbon steel wire rods, whose carbon content was varied from 0.2 to 0.8 wt%, were analyzed by forging simulation test using a split Hopkinson’s pressure bar. The test results indicated that the 0.2C and 0.3C steels were dynamically compressed without surface defects after the fifth hit, whereas a deep crack was formed along the 45° direction in the 0.8C steel. In all the steels, adiabatic shear bands were formed diagonally inside forging-simulated specimens, and grains were extremely elongated within shear bands. The higher the volume fraction of pearlite was, the easier was the adiabatic shear banding. Particularly in the 0.8C steel, the shear band was white-colored and narrow, along which a long crack was formed. After the spheroidization treatment of the 0.8C steel, adiabatic shear bands or cracks were not found during the forging simulation test as the steel was relatively homogeneously deformed, which indicated that the spheroidization effectively prevented the adiabatic shear banding or cracking. The present forging simulation test plausibly evaluated the cold-forging performance by controlling the number and amount of hit, and provided an important idea on whether the spheroidization was needed or not. Keywords forging adiabatic shear banding strain rate split Hopkinson’s pressure bar impact test

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700