Optical and structural properties of tenorite nanopowders doped by Si and Zr
详细信息    查看全文
  • 作者:Nasrollah Najibi Ilkhechi (1)
    Behzad Koozegar-Kaleji (1)
    Fallah Dousi (2)

    1. Department of Materials Engineering
    ; Faculty of Engineering ; Malayer University ; P.O.Box 65719-95863 ; Malayer ; Iran
    2. Department of Physics
    ; Faculty of Science ; Malayer University ; Malayer ; Iran
  • 关键词:CuO nanopowders ; Band gap energy ; Si and Zr dopant
  • 刊名:Optical and Quantum Electronics
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:47
  • 期:3
  • 页码:633-642
  • 全文大小:1,026 KB
  • 参考文献:1. Alkoy, E.M., Kelly, P.: The structure and properties of copper oxide and copper aluminium oxide coatings prepared by pulsed magnetron sputtering of powder targets. Vacuum 79, 221鈥?30 (2005) CrossRef
    2. Armelao, L., Barrera, D., Bertapelle, M., Bottaro, G., Sada, C., Tondello, E.: A sol鈥揼el approach to nanophasic copper oxide thin films. Thin Solid Films 442, 48鈥?2 (2003) CrossRef
    3. Athawale, A.A., Katre, P.K., Kumar, M., Majumdar, M.B.: Synthesis of CTAB-IPA reduced copper nanoparticles. Mater. Chem. Phys. 91, 507鈥?12 (2005) CrossRef
    4. Borgohain, K., Mahamuni, S.: Formation of single phase CuO quantum particles. J. Mater. Res. 17, 1220鈥?223 (2002) CrossRef
    5. Callister, W.D., Rethwisch, D.G.: Fundamentals of materials science and engineering, 3rd edition, chapter 6 (2007)
    6. Chakradhar, R.P.S., Ramesh, K.P., Rao, J.L., Ramakrishna, J.: Mixed alkali effect in borate glasses鈥揈PR and optical absorption studies in \(\text{ xNa }_{2}\text{ O }\) -(30?x) \(\text{ K }_{2}\text{ O }-70\text{ B }_{2}\text{ O }_{3}\) glasses doped with \(\text{ Mn }^{2+}\) . J. Phys. Chem. Solid 64, 641鈥?50 (2003) CrossRef
    7. Chen, J., Deng, S., Xu, N., Zhang, W., Wen, X., Yang, S.: Temperature dependence of field emission from cupric oxide nanobelt films. Appl. Phys. Lett. 83, 746鈥?48 (2003) CrossRef
    8. Chowdhuri, A., Gupta, V., Sreenivas, K., Kumar, R., Mozumdar, S., Patanjali, P.K.: Response speed of \(\text{ SnO }_{2}\) based \(\text{ H }_{2}{\rm S}\) gas sensors with CuO nanoparticles. Appl. Phys. Lett. 84, 1180鈥?182 (2004)
    9. Colon, G., Hidalgo, M.C., Munuera, G., Ferino, I., Cutrufello, M.G., Navio, J.A.: Structural and surface approach to the enhanced photocatalytic activity of sulfated \(\text{ TiO }_{2}\) photocatalyst. Appl. Catal. B Environ. 63, 45鈥?9 (2006) CrossRef
    10. Cruccolini, A., Narducci, R., Palombari, R.: Gas adsorption effects on surface conductivity of nonstoichiometric CuO. Sens. Actuator B 98, 227鈥?32 (2004) CrossRef
    11. Daia, M., Kwona, J., Langereisa, E., Lwielunskia, L., Yves, J., Lib Z.C., Roy. G.G.: ECS Transactions 11(7), 91鈥?01 (2007)
    12. Dutta, A., Das, D., Bartolomeo, E., Traversa, E., Chakravorty, D.: Preparation of sol鈥揼el nano-composites containing copper oxide and their gas sensing properties. J. Sol鈥揋el Sci. Tech. 26, 1085鈥?089 (2003) CrossRef
    13. Eliseev, A.A., Lukashin, A.V., Vertegel, A.A., Heifets, L.I., Zhirov, A.I., Tretyakov, Y.D.: Complexes of Cu (II) with polyvinyl alcohol as precursors for the preparation of \(\text{ CuO/SiO }_{2}\) nanocomposites. Mater. Res. Innov. 3, 308鈥?12 (2000) CrossRef
    14. Gao, X.P., Bao, J.L., Pan, G.L., Zhu, H.Y., Huang, P.X., Wu, F.: Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery. J. Phys. Chem. B 108, 5547鈥?551 (2004) CrossRef
    15. Hsieh, C.T., Chen, J.M., Lin, H.H., Shih, H.C.: Field emission from various CuO nanostructures. Appl. Phys. Lett. 83, 3383鈥?385 (2003) CrossRef
    16. Kim, Y.H., Lee, D.K., Jo, B.G., Jeong, J.H., Kang, Y.S.: Synthesis of oleate capped Cu nanoparticles by thermal decomposition. Physicochem. Eng. Aspect. 284, 364鈥?68 (2006) CrossRef
    17. Kumar, R.V., Diamant, Y., Gedanken, A.: Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chem. Mater. 12, 2301鈥?305 (2000) CrossRef
    18. Li, S., Zhang, H., Ji, Y., Yang, D.: CuO nanodendrites synthesized by a novel hydrothermal route. Nanotechnology 15, 1428鈥?432 (2004) CrossRef
    19. Li, Y., Liang, J., Tao, Z.: CuO particles and plates: synthesis and gas-sensor application. J. Chem. Mater. Res. Bull. 43, 2380鈥?385 (2008) CrossRef
    20. Liu, X., Li, Z., Zhang, Q., Li, F., Kong, T.: Preparation of CuO/C core-shell nanowires and its application in lithium ion batteries. Mater. Lett. 72, 49鈥?2 (2012) CrossRef
    21. Mohanan, J.L., Brock, S.L.: Influence of synthetic and processing parameters on the surface area, speciation, and particle formation in copper oxide/silica aerogel composites. Chem. Mater. 15, 2567鈥?576 (2003) CrossRef
    22. Morterra, C., Giamello, E., Cerrato, G., Centi, G., Perathoner, S.: Role of surface hydration state on the nature and reactivity of copper ions in Cu鈥揨rO \(_{2}\) catalysts: N \(_{2}\) O decomposition. J. Catal. 179, 111鈥?28 (1998) CrossRef
    23. Okamoto, Y., Gotoh, H., Aritani, H., Tanaka, T., Yoshida, S.: Zirconia-supported copper-catalysts for No鈥揅o reactions鈥攕urface copper species on zirconia. J. Chem. Soc. 93, 3879鈥?885 (1997)
    24. Parler, C.M., Ritter, J.A.: Infrared spectroscopic study of sol鈥揼el derived mixed metal oxides. J. Non-Cryst. Solids 279, 119鈥?25 (2001) CrossRef
    25. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., Tarascon, J.M.: Nano-sized transition-metal oxides as negative-electrode materials for lithium鈥搃on batteries. Nature 407, 496鈥?99 (2000) CrossRef
    26. Ponce, A.A., Klabunde, K.J.: Chemical and catalytic activity of copper nanoparticles prepared via metal vapor synthesis. J. Mol. Catal. A Chem. 225, 1鈥? (2005) CrossRef
    27. Queeney, K.T., Herbots, N., Shaw, J.M., Atluri, V., Chabal, Y.J.: Infrared spectroscopic analysis of an ordered Si/SiO \(_2\) interface. Appl. Phys. Lett. 84, 493鈥?96 (2004) CrossRef
    28. Reitz, J.B., Solomon, E.I.: Propylene oxidation on copper oxide surfaces? Electronic and geometric contributions to reactivity and selectivity. J. Am. Chem. Soc. 120, 11467鈥?1478 (1998) CrossRef
    29. Sakavanti-Niasari, M., Davar, F., Mir, N.: Synthesis and characterization of metallic copper nanoparticles via thermal decomposition. Polyhedron 27, 3514鈥?518 (2008) CrossRef
    30. Shende, R., Subramanian, S., Hasan, S., Apperson, S., Thiruvengadathan, R., Gangopadhyay, K.: Nanoenergetic composites of CuO nanorods, nanowires, and Al-nanoparticles. Propellant. Explos. Pyrotech. 33, 122鈥?30 (2008) CrossRef
    31. Sullivan, J.A., Doherty, J.A.: NH3 and urea in the selective catalytic reduction of NOx over oxide-supported copper catalysts. Appl. Catal. B: Environ. 55, 185鈥?94 (2005) CrossRef
    32. Switzer, J.A., Kothari, H.M., Poizot, P., Nakanishi, S., Bohannan, E.W.: Enantiospecific electrodeposition of a chiral catalyst. Nature 425, 490鈥?93 (2003) CrossRef
    33. Vrinat, M., Hamon, D., Breysse, M., Durand, B., Des Courrieres, T.: Zirconia- and alumina-supported molybdenum-based catalysts: a comparative study in hydrodesulfurization and hydrogenation reactions. Catal. Today 20, 273鈥?82 (1994) CrossRef
    34. Xu, J.F., Ji, W., Shen, Z.X., Tang, S.H., Ye, X.R., la, D.J., Xin, X.Q.: Preparation and characterization of CuO nanocrystals. J. Solid State Chem. 147, 516鈥?19 (2000) CrossRef
    35. Yamaguchi, T.: Application of \(\text{ ZrO }_{2}\) as a catalyst and a catalyst support. Catal. Today 20, 199鈥?18 (1994) CrossRef
    36. Yang, Z., Xu, J., Zhang, W., Liu, A., Tang, S.: Controlled synthesis of CuO nanostructures by a simple solution route. J. Solid State Chem. 180, 1390鈥?396 (2007) CrossRef
    37. Zeng, C.H., Hosseinty, N., Zhang, C.H., Wang, B.: Synthesis and processing of PMMA carbon nanotube nanocomposite foams. Polymer 51, 655鈥?64 (2010) CrossRef
    38. Zhang, J., Liu, J., Peng, Q., Wang, X., Li, Y.: Nearly monodisperse Cu \(_2\) O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem. Mater. 18, 867鈥?71 (2006) CrossRef
    39. Zhang, Z., Wang, P.: Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. J. Mater. Chem. 22, 2456鈥?464 (2012) CrossRef
    40. Zhu, J., Li, D., Chen, H., Yang, X., Lu, L., Wang, X.: Highly dispersed CuO nanoparticles prepared by a novel quick-precipitation method. Mater. Lett. 58, 3324鈥?327 (2004) CrossRef
    41. Zhu, H.T., Zhang, C.Y., Tang, Y.M., Wang, J.X.: Novel synthesis and thermal conductivity of CuO nanofluid. J. Phys. Chem. C 111, 1646鈥?650 (2007) CrossRef
  • 刊物主题:Optics, Optoelectronics, Plasmonics and Optical Devices; Electrical Engineering; Characterization and Evaluation of Materials; Computer Communication Networks;
  • 出版者:Springer US
  • ISSN:1572-817X
文摘
In this study preparation of Si and Zr doped CuO nanopowders have been investigated. The effects of Si and Zr doping and heat treatment temperature on the structural and optical properties of Nanopowders have been studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM-EDX), UV-Vis absorption and FTIR spectroscopy. Nanopowders were obtained by sol gel method under room conditions (temperature, 25鈥?2聽 \(^{\circ }\mathrm{C}\) ) and were subsequently calcined at different temperatures (400鈥?00聽 \(^{\circ }\mathrm{C}\) ). XRD results suggest that adding impurities has a significant effect on the crystallinity, and particle size of CuO. The patterns showed that CuO nanopowders calcined at different temperature were Tenorite structure. The optical absorption spectrum indicates that the CuO nanoparticles have a direct band gap of 1.78聽eV. But optical band gap of the doped CuO (15聽% Si and 15聽% Zr) was found to be 3.75鈥?.95聽eV.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700