Shape-controlled syntheses of rhodium nanocrystals for the enhancement of their catalytic properties
详细信息    查看全文
  • 作者:Shuifen Xie (1)
    Xiang Yang Liu (1)
    Younan Xia (2) (3)

    1. Research Institute for Soft Matter and Biomimetics and Department of Physics
    ; Xiamen University ; Xiamen ; Fujian ; 361005 ; China
    2. The Wallace H. Coulter Department of Biomedical Engineering
    ; Georgia Institute of Technology and Emory University ; Atlanta ; Georgia ; 30332 ; USA
    3. School of Chemistry and Biochemistry and School of Chemical and Biomolecular Engineering
    ; Georgia Institute of Technology ; Atlanta ; Georgia ; 30332 ; USA
  • 关键词:Rhodium nanocrystals ; shape control ; material synthesis ; surface structure ; catalysis
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:8
  • 期:1
  • 页码:82-96
  • 全文大小:5,857 KB
  • 参考文献:1. http://en.wikipedia.org/wiki/Rhodium
    2. Dykman, L.; Khlebtsov, N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. / Chem. Soc. Rev. 2012, / 41, 2256鈥?282. 39/c1cs15166e" target="_blank" title="It opens in new window">CrossRef
    3. Dreaden, E. C.; Alkilany, A. M.; Huang, X. H.; Murphy, C. J.; El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. / Chem. Soc. Rev. 2012, / 41, 2740鈥?779. 39/c1cs15237h" target="_blank" title="It opens in new window">CrossRef
    4. Christopher, P.; Linic, S. Engineering selectivity in heterogeneous catalysis: Ag nanowires as selective ethylene epoxidation catalysts. / J. Am. Chem. Soc. 2008, / 130, 11264鈥?1265. 3818k" target="_blank" title="It opens in new window">CrossRef
    5. Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W. Y.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. N. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. / Chem. Rev. 2011, / 111, 3669鈥?712. CrossRef
    6. Zhang, H.; Jin, M. S.; Xiong, Y. J.; Lim, B.; Xia, Y. N. Shapecontrolled synthesis of Pd nanocrystals and their catalytic applications. / Acc. Chem. Res. 2013, / 46, 1783鈥?794. 300209w" target="_blank" title="It opens in new window">CrossRef
    7. Chen, M.; Wu, B. H.; Yang, J.; Zheng, N. F. Small adsorbate-assisted shape control of Pd and Pt nanocrystals. / Adv. Mater. 2012, / 24, 862鈥?79. CrossRef
    8. Peng, Z. M.; Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. / Nano Today 2009, / 4, 143鈥?64. CrossRef
    9. Joo, S. H.; Park, J. Y.; Tsung, C.-K.; Yamada, Y.; Yang, P. D.; Somorjai, G. A. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. / Nat. Mater. 2009, / 8, 126鈥?31. 38/nmat2329" target="_blank" title="It opens in new window">CrossRef
    10. Quek, X.-Y.; Guan, Y. J.; Hensen, E. J. M. Structure sensitivity in the hydrogenation of unsaturated hydrocarbons over Rh nanoparticles. / Catal. Today 2012, / 183, 72鈥?8. CrossRef
    11. Yuan, Y; Yan, N.; Dyson, P. J. Advances in the rational design of rhodium nanoparticle catalysts: control via manipulation of the nanoparticle core and stabilizer. / ACS Catal. 2012, / 2, 1057鈥?069. 300142u" target="_blank" title="It opens in new window">CrossRef
    12. Liguras, D. K.; Kondarides, D. I.; Verykios, X. E. Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. / Appl. Catal., B: / Environ. 2003, / 43, 345鈥?54. 3373(02)00327-2" target="_blank" title="It opens in new window">CrossRef
    13. Campos-Skrobot, F. C.; Rizzo-Domingues, R. C. P.; Fernandes-Machado, N. R. C.; Cant茫o, M. P. Novel zeolite-supported rhodium catalysts for ethanol steam reforming. / J. Power Sources 2008, / 183, 713鈥?16. CrossRef
    14. Zhang, Y. W.; Grass, M. E.; Huang, W. Y.; Somorjai, G. A. Seedless polyol synthesis and CO oxidation activity of monodisperse (111)- and (100)-oriented rhodium nanocrystals in sub-10 nm sizes. / Langmuir 2010, / 26, 16463鈥?6468. 3q" target="_blank" title="It opens in new window">CrossRef
    15. Wang, R.; He, H.; Wang, J. N.; Liu, L. C.; Dai, H. X. Shaperegulation: An effective way to control CO oxidation activity over noble metal catalysts. / Catal. Today 2013, / 201, 68鈥?8. 3.082" target="_blank" title="It opens in new window">CrossRef
    16. Renzas, J. R.; Zhang, Y. W.; Huang, W. Y.; Somorjai, G. A. Rhodium nanoparticle shape dependence in the reduction of NO by CO. / Catal. Lett. 2009, / 132, 317鈥?22. 3" target="_blank" title="It opens in new window">CrossRef
    17. Holles, J. H.; Switzer, M. A.; Davis, R. J. Influence of ceria and lanthana promoters on the kinetics of NO and N2O reduction by CO over alumina-supported palladium and rhodium. / J. Catal. 2000, / 190, 247鈥?60. CrossRef
    18. Zhao, Z.-J.; Moskaleva, L. V.; R枚sch, N. Ring-opening reactions of methylcyclopentane over metal catalysts, M = Pt, Rh, Ir, and Pd: A mechanistic study from first-principles calculations. / ACS Catal. 2013, / 3, 196鈥?05. 3005924" target="_blank" title="It opens in new window">CrossRef
    19. Halasi, G.; B谩ns谩gi, T.; Solymosi, F. Production of hydrogen from dimethyl ether oversupported rhodium catalysts. / ChemCatChem 2009, / 1, 311鈥?17. 3" target="_blank" title="It opens in new window">CrossRef
    20. Gandhi, H. S.; Graham, G. W.; McCabe, R. W. Automotive exhaust catalysis. / J. Catal. 2003, / 216, 433鈥?42. CrossRef
    21. Loferski, P. J. / Commodity Report: Platinum-Group Metal. United States Geological Survey, 2012-07-16.
    22. Xie, S. F.; Choi, S.-I.; Xia, X.; Xia, Y. Catalysis on faceted noble-metal nanocrystals: both shape and size matter. / Curr. Opin. Chem. Eng. 2013, / 2, 142鈥?50. 3.02.003" target="_blank" title="It opens in new window">CrossRef
    23. Gniewek, A.; Trzeciak, A. M. Rh(0) Nanoparticles: Synthesis, structure and catalytic application in Suzuki-Miyaura reaction and hydrogenation of benzene. / Top Catal. 2013, / 56, 1239鈥?245. 3-0090-6" target="_blank" title="It opens in new window">CrossRef
    24. Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shapecontrolled synthesis of metal nanocrystals: Simple chemistry meets complex physics? / Angew. Chem. Int. Ed. 2009, / 48, 60鈥?03. CrossRef
    25. Zou, Z. Y.; Tian, N.; Li, J. T.; Broadwell, I.; Sun, S. G. Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. / Chem. Soc. Rev. 2011, / 40, 4167鈥?185. 39/c0cs00176g" target="_blank" title="It opens in new window">CrossRef
    26. Zhou, K. B.; Li, Y. D. Catalysis based on nanocrystals with well-defined facets. / Angew. Chem. Int. Ed. 2012, / 51, 602鈥?13. CrossRef
    27. Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. / Science 2007, / 315, 493鈥?97. 35941" target="_blank" title="It opens in new window">CrossRef
    28. Zaera, F. Shape-controlled nanostructures in heterogeneous catalysis. / ChemSusChem 2013, / 6, 1797鈥?820. 300398" target="_blank" title="It opens in new window">CrossRef
    29. Goodman, D. W. Model catalytic studies over metal single crystals. / Acc. Chem. Res. 1984, / 17, 194鈥?00. CrossRef
    30. Li, Y. X.; Bowker, M. The adsorption and decomposition of nitrous oxide on Rh(110) and Rh(111). / Surf. Sci. 1996, / 348, 67鈥?6. 39-6028(96)00953-3" target="_blank" title="It opens in new window">CrossRef
    31. Comelli, G.; Dhanak, V. R.; Kiskinova, M.; Prince, K. C.; Rosei, R. Oxygen and nitrogen interaction with rhodium single crystal surfaces. / Surf. Sci. Rep. 1998, / 32, 165鈥?31. 3-X" target="_blank" title="It opens in new window">CrossRef
    32. Hopstaken, M. J. P.; Niemantsverdriet, J. W. Structure sensitivity in the CO oxidation on rhodium: Effect of adsorbate coverages on oxidation kinetics on Rh(100) and Rh(111). / J. Chem. Phys. 2000, / 113, 5457鈥?465. 3/1.1289764" target="_blank" title="It opens in new window">CrossRef
    33. Mavrikakis, M.; B盲umer, M.; Freund, H.-J.; N酶rskov, J. K. Structure sensitivity of CO dissociation on Rh surfaces. / Catal. Lett. 2002, / 81, 153鈥?56. 3/A:1016560502889" target="_blank" title="It opens in new window">CrossRef
    34. Hoefelmeyer, J. D.; Niesz, K.; Somorjai, G. A.; Tilley, T. D. Radial anisotropic growth of rhodium nanoparticles. / Nano Lett. 2005, / 5, 435鈥?38. CrossRef
    35. Zettsu, N.; McLellan, J. M.; Wiley, B.; Yin, Y. D.; Li, Z.-Y.; Xia, Y. N. Synthesis, stability, and surface plasmonic properties of rhodium multipods, and their use as substrates for surface-enhanced Raman scattering. / Angew. Chem. Int. Ed. 2006, / 45, 1288鈥?292. 3174" target="_blank" title="It opens in new window">CrossRef
    36. Park, K. H.; Jang, K.; Kim, H. J.; Son, S. U. Nearmonodisperse tetrahedral rhodium nanoparticles on charcoal: The shape-dependent catalytic hydrogenation of arenes. / Angew. Chem. Int. Ed. 2007, / 46, 1152鈥?155. 3961" target="_blank" title="It opens in new window">CrossRef
    37. Zhang, Y. W.; Grass, M. E.; Habas, S. E.; Tao, F.; Zhang, T. F.; Yang, P. D.; Somorjai, G. A. One-step polyol synthesis and Langmuir-Blodgett monolayer formation of size-tunable monodisperse rhodium nanocrystals with catalytically active (111) surface structures. / J. Phys. Chem. C 2007, / 111, 12243鈥?2253. 3350h" target="_blank" title="It opens in new window">CrossRef
    38. Humphrey, S. M.; Grass, M. E.; Habas, S. E.; Niesz, K.; Somorjai, G. A.; Tilley, T. D. Rhodium nanoparticles from cluster seeds: Control of size and shape by precursor addition rate. / Nano Lett. 2007, / 7, 785鈥?90. 35y" target="_blank" title="It opens in new window">CrossRef
    39. Biacchi, A. J.; Schaak, R. E. The solvent matters: kinetic versus thermodynamic shape control in the polyol synthesis of rhodium nanoparticles. / ACS Nano 2011, / 5, 8089鈥?099. CrossRef
    40. Xiong, Y. J.; Xia, Y. N. Shape-controlled synthesis of metal nanostructures: The case of palladium. / Adv. Mater. 2007, / 19, 3385鈥?391. 301" target="_blank" title="It opens in new window">CrossRef
    41. Kwon, S. G.; Hyeon, T. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. / Acc. Chem. Res. 2008, / 41, 1696鈥?709. 37" target="_blank" title="It opens in new window">CrossRef
    42. Xiong, Y. J.; McLellan, J. M.; Chen, J. Y.; Yin, Y. D.; Li, Z. Y.; Xia, Y. N. Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties. / J. Am. Chem. Soc. 2005, / 127, 17118鈥?7127. CrossRef
    43. Zeng, J.; Zhu, C.; Tao, J.; Jin, M. S.; Zhang, H.; Li, Z.-Y.; Zhu, Y. M.; Xia, Y. N. Controlling the nucleation and growth of silver on palladium nanocubes by manipulating the reaction kinetics. / Angew. Chem. Int. Ed. 2012, / 51, 2354鈥?358. CrossRef
    44. Wen, Y.-N; Zhang, H.-M. Surface energy calculation of the fcc metals by using the MAEAM. / Solid State Commun. 2007, / 144, 163鈥?67. CrossRef
    45. Yu, N.-F.; Tian, N.; Zhou, Z.-Y.; Huang, L.; Xiao, J.; Wen, Y.-H.; Sun, S.-G. Electrochemical synthesis of tetrahexahedral rhodium nanocrystals with extraordinarily high surface energy and high electrocatalytic activity. / Angew. Chem. Int. Ed. 2014, / 53, 5097鈥?101.
    46. Frenken, J. W. M.; Stoltze, P. Are vicinal metal surfaces stable? / Phys. Rev. Lett. 1999, / 82, 3500鈥?503. 3/PhysRevLett.82.3500" target="_blank" title="It opens in new window">CrossRef
    47. Li, Y.; Huang, Y. Morphology-controlled synthesis of platinum nanocrystals with specific petides. / Adv. Mater. 2010, / 22, 1921鈥?925. 3944" target="_blank" title="It opens in new window">CrossRef
    48. Zeng, J.; Zheng, Y. Q.; Rycenga, M.; Tao, J.; Li, Z.-Y.; Zhang, Q.; Zhu, Y. M.; Xia, Y. N. Controlling the shapes of silver nanocrystals with different capping agents. / J. Am. Chem. Soc. 2010, / 132, 8552鈥?553. 3655f" target="_blank" title="It opens in new window">CrossRef
    49. Gu, J.; Zhang, Y. W.; Tao, F. Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches. / Chem. Soc. Rev. 2012, / 41, 8050鈥?065. 39/c2cs35184f" target="_blank" title="It opens in new window">CrossRef
    50. Chiu, C.-Y.; Wu, H.; Yao, Z. Y.; Zhou, F; Zhang, H.; Ozolins, V.; Huang, Y. Facet-selective adsorption on noble metal crystals guided by electrostatic potential surfaces of aromatic molecules. / J. Am. Chem. Soc. 2013, / 135, 15489鈥?5500. CrossRef
    51. Zhang, Y. W.; Grass, M. E.; Kuhn, J. N.; Tao, F.; Habas, S. E.; Huang, W. Y.; Yang, P.; Somorjai, G. A. Highly selective synthesis of catalytically active monodisperse rhodium nanocubes. / J. Am. Chem. Soc. 2008, / 130, 5868鈥?869. CrossRef
    52. Zhang, H.; Jin, M. S.; Liu, H. Y.; Wang, J. G.; Kim, M. J.; Yang, D. R.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. Facile synthesis of Pd-Pt alloy nanocages and their enhanced performance for preferential oxidation of CO in excess hydrogen. / ACS Nano 2011, / 5, 8212鈥?222. CrossRef
    53. Yao, S. Y.; Yuan, Y.; Xiao, C. X.; Li, W. Z.; Kou, Y.; Dyson, P. J.; Yan, N.; Asakura, H.; Teramura, K.; Tanaka, T. Insights into the formation mechanism of rhodium nanocubes. / J. Phys. Chem. C 2012, / 116, 15076鈥?5086. 302471p" target="_blank" title="It opens in new window">CrossRef
    54. Jang, K.; Kim, H. J.; Son, S. U. Low-temperature synthesis of ultrathin rhodium nanoplates via molecular orbital symmetry interaction between rhodium precursors. / Chem. Mater. 2010, / 22, 1273鈥?275. CrossRef
    55. Duan, H. H.; Yan, N.; Yu, R.; Chang, C. R.; Zhou, G.; Hu, H. S.; Rong, H. P.; Niu, Z. Q; Mao, J. J.; Asakura, H.; et al. Ultrathin rhodium nanosheets. / Nat. Commun. 2014, / 5, doi: 10.1038/ncomms4093.
    56. Langille, M. R.; Personick, M. L.; Zhang, J.; Mirkin, C. A. Defining rules for the shape evolution of gold nanoparticles. / J. Am. Chem. Soc. 2012, / 134, 14542鈥?4554. 305245g" target="_blank" title="It opens in new window">CrossRef
    57. Zhang, H.; Jin, M. S.; Xia, Y. N. Nobel-metal nanocrystals with concave surfaces: Synthesis and applications. / Angew. Chem. Int. Ed. 2012, / 51, 7656鈥?673. CrossRef
    58. Zhang, H.; Li, W. Y.; Jin, M. S.; Zeng, J.; Yu, T. K.; Yang, D. R.; Xia, Y. N. Controlling the morphology of rhodium nanocrystals by manipulating the growth kinetics with a syringe pump. / Nano Lett. 2011, / 11, 898鈥?03. 347j" target="_blank" title="It opens in new window">CrossRef
    59. Xie, S. F.; Lu, N.; Xie, Z. X.; Wang, J. G.; Kim, M. J.; Xia, Y. N. Synthesis of Pd-Rh core-frame concave nanocubes and their conversion to Rh cubic nanoframes by selective etching of the Pd cores. / Angew. Chem. Int. Ed. 2012, / 51, 10266鈥?0270. CrossRef
    60. Xia, X. H.; Xie, S. F.; Liu, M. C.; Peng, H. C.; Lu, N.; Wang, J. G.; Kim, M. J.; Xia, Y. N. On the role of surface diffusion in determining the shape or morphology of noblemetal nanocrystals. / Proc. Natl. Acad. Sci. USA 2013, / 110, 6669鈥?673. 3/pnas.1222109110" target="_blank" title="It opens in new window">CrossRef
    61. Oura, K.; Lifshits, V. G.; Saranin, A. A.; Zotov, A. V.; Katayama, M. / Surface Science: An Introduction. 1st Ed, Springer: Heidelberg, 2008; p 324.
    62. Kolasinski, K. W. / Surface Science: Foundations of Catalysis and Nanoscience; 2nd Ed, Wiley: New York, 2008.
    63. Xie, S. F.; Zhang, H.; Lu, N.; Jin, M. S.; Wang, J. G.; Kim, M. J.; Xie, Z. X.; Xia, Y. N. Synthesis of rhodium concave tetrahedrons by collectively manipulating the reduction kinetics, facet-selective capping, and surface diffusion. / Nano Lett. 2013, / 13, 6262鈥?268. 3770g" target="_blank" title="It opens in new window">CrossRef
    64. Zheng, Y. Q.; Zeng, J.; Ruditskiy, A.; Liu, M. C.; Xia, Y. N. Oxidative etching and its role in manipulating the nucleation and growth of noble-metal nanocrystals. / Chem. Mater. 2014, / 26, 22鈥?3. 3g" target="_blank" title="It opens in new window">CrossRef
    65. Zhang, H.; Xia, X. H.; Li, W. Y.; Zeng, J.; Dai, Y. Q.; Yang, D. R.; Xia, Y. N. Facile synthesis of five-fold twinned, starfish-like rhodium nanocrystals by eliminating oxidative etching with a chloride-free precursor. / Angew. Chem. Int. Ed. 2010, / 49, 5296鈥?300. CrossRef
    66. Mulvihill, M. J.; Ling, X. Y.; Henzie, J.; Yang, P. D. Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. / J. Am. Chem. Soc. 2010, / 132, 268鈥?74. CrossRef
    67. Chen, Y. M.; Chen, Q. S.; Peng, S. Y.; Wang, Z. Q.; Lu, G.; Guo, G. C. Manipulating the concavity of rhodium nanocubes enclosed by high-index facets via site-selective etching. / Chem. Commun. 2014, / 50, 1662鈥?664. 39/c3cc47567k" target="_blank" title="It opens in new window">CrossRef
    68. Xie, S. F.; Peng, H. C.; Lu, N.; Wang, J. G.; Kim, M. J.; Xie, Z. X.; Xia, Y. N. Confining the nucleation and overgrowth of Rh to the {111} facets of Pd nanocrystal seeds: The roles of capping agent and surface diffusion. / J. Am. Chem. Soc. 2013, / 135, 16658鈥?6667. CrossRef
    69. Chen. C.; Kang, Y. J.; Huo, Z.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M.; et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. / Science 2014, / 343, 1339鈥?343. CrossRef
    70. Wang, Z. L. Transmission electron microscopy of shapecontrolled nanocrystals and their assemblies. / J. Phys. Chem. B 2000, / 104, 1153鈥?175. 3593c" target="_blank" title="It opens in new window">CrossRef
    71. Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. / Science 2007, / 316, 732鈥?35. CrossRef
    72. Xiao, J.; Liu, S.; Tian, N.; Zhou, Z.-Y.; Liu, H. X.; Xu, B. B.; Sun, S. G. Synthesis of convex hexoctahedral Pt micro/nanocrystals with high-index facets and electrochemistry-mediated shape evolution. / J. Am. Chem. Soc. 2013, / 135, 18754鈥?8757. 3b" target="_blank" title="It opens in new window">CrossRef
    73. Tian, N.; Zhou, Z. Y.; Yu, N. F.; Wang, L. Y.; Sun, S. G. Direct Electrodeposition of tetrahexahedral Pd nanocrystals with high-index facets and high catalytic activity for ethanol electrooxidation. / J. Am. Chem. Soc. 2010, / 132, 7580鈥?581. CrossRef
    74. Yoon, T. J.; Kim, J. I.; Lee, J. K. Rh-based olefin hydroformylation catalysts and the change of their catalytic activity depending on the size of immobilizing supporters. / Inorg. Chim. Acta 2003, / 345, 228鈥?34. 3(02)01354-3" target="_blank" title="It opens in new window">CrossRef
    75. Gustafson, J.; Westerstr枚m, R.; Mikkelsen, A.; Torrelles, X.; Balmes, O.; Bovet, N.; Andersen, J. N.; Baddeley, C. J.; Lundgren, E. Sensitivity of catalysis to surface structure: The example of CO oxidation on Rh under realistic conditions. / Phys. Rev. 2008, / 78, 045423. 3/PhysRevB.78.045423" target="_blank" title="It opens in new window">CrossRef
    76. Quer, X. Y.; Guan, Y. J.; Hensen, E. J. M. Structure sensitivity in the hydrogenation of unsaturated hydrocarbons over Rh nanoparticles. / Catal. Today 2012, / 183, 72鈥?8. CrossRef
    77. Singh, U. K.; Vannice, M. A. Kinetics of liquid-phase hydrogenation reactions over supported metal catalysts鈥攁 review. / Appl. Catal. A: General 2001, / 213, 1鈥?4. CrossRef
    78. Housmans, T. H. M.; Feliu, J. M.; Koper, M. T. M. CO oxidation on stepped Rh[n (111) 脳 (111)] single crystal electrodes: A voltammetric study. / J. Electroanal. Chem. 2004, / 572, 79鈥?1. 3" target="_blank" title="It opens in new window">CrossRef
    79. Liu, H. Z.; Jiang, T.; Han, B. X.; Liang, S. G.; Zhou, Y. X. Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst. / Science 2009, / 326, 1250鈥?252. 3" target="_blank" title="It opens in new window">CrossRef
    80. Franke, R.; Selent, D.; B枚rner, A. Applied hydroformylation. / Chem. Rev. 2012, / 112, 5675鈥?732. 3001803" target="_blank" title="It opens in new window">CrossRef
    81. Hou, C.; Zhao, G. F.; Ji, Y. J.; Niu, Z. Q.; Wang, D. S.; Li, Y. D. Hydroformylation of alkenes over rhodium supported on the metal-organic framework ZIF-8. / Nano Res. 2014, / 7, 1364鈥?369. CrossRef
    82. Huang, X. Q.; Zhao, Z. P.; Chen, Y.; Chiu, C. Y.; Ruan, L. Y.; Liu, Y.; Li, M. F.; Duan, X. F.; Huang, Y. High density catalytic hot spots in ultrafine wavy nanowires. / Nano Lett. 2014, / 14, 3887鈥?894. 37a" target="_blank" title="It opens in new window">CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Rhodium (Rh) is a critical component of many catalysts for a variety of chemical transformation processes. Controlling the shape of Rh nanocrystals offers an effective route to the optimization of their catalytic performance owing to a close correlation between the catalytic activity/selectivity and the surface atomic structure. It also helps to substantially reduce the loading amount and thus achieve a sustainable use of this scarce and precious metal. In this review article, we focus on recent progress in the shape-controlled synthesis of Rh nanocrystals with the goal of enhancing their catalytic properties. Both traditional and newly-developed synthetic strategies and growth mechanisms will be discussed, including those based on the use of surface capping agents, manipulation of reduction kinetics, control of surface diffusion rate, management of oxidation etching, and electrochemical alteration. We also use two examples to highlight the unique opportunities offered by shape-controlled synthesis for enhancing the use of this metal in catalytic applications. The strategies can also be extended to other precious metals in an effort to advance the production of cost-effective catalysts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700