Effectively identifying regulatory hotspots while capturing expression heterogeneity in gene expression studies
详细信息    查看全文
  • 作者:Jong Wha J Joo (1)
    Jae Hoon Sul (2)
    Buhm Han (3) (4)
    Chun Ye (5)
    Eleazar Eskin (1) (2) (6)

    1. Bioinformatics IDP
    ; University of California ; Los Angeles ; CA ; USA
    2. Computer Science Department
    ; University of California ; Los Angeles ; CA ; USA
    3. Division of Genetics
    ; Brigham & Women鈥檚 Hospital ; Harvard Medical School ; Boston ; MA ; USA
    4. Program in Medical and Population Genetics
    ; Broad Institute of Harvard and MIT ; Cambridge ; MA ; USA
    5. Broad Institute
    ; 7 Cambridge Center ; Cambridge ; MA ; USA
    6. Department of Human Genetics
    ; University of California ; Los Angeles ; CA ; USA
  • 刊名:Genome Biology
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:15
  • 期:4
  • 全文大小:669 KB
  • 参考文献:1. Brem, RB, Yvert, G, Clinton, R, Kruglyak, L (2002) Genetic dissection of transcriptional regulation in budding yeast. Science 296: pp. 752-755 CrossRef
    2. Brem, RB, Kruglyak, L (2005) The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc Natl Acad Sci USA 102: pp. 1572-1577 CrossRef
    3. Keurentjes, JJB, Fu, J, Terpstra, IR, Garcia, JM, van den Ackerveken, G, Snoek, LB, Peeters, AJM, Vreugdenhil, D, Koornneef, M, Jansen, RC (2007) Regulatory network construction in Arabidopsis by using genome-wide gene expression quantitative trait loci. Proc Natl Acad Sci USA 104: pp. 1708-1713 CrossRef
    4. Chesler, EJ, Lu, L, Shou, S, Qu, Y, Gu, J, Wang, J, Hsu, HC, Mountz, JD, Baldwin, NE, Langston, MA, Threadgill, DW, Manly, KF, Williams, RW (2005) Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37: pp. 233-242 CrossRef
    5. Bystrykh, L, Weersing, E, Dontje, B, Sutton, S, Pletcher, MT, Wiltshire, T, Su, AI, Vellenga, E, Wang, J, Manly, KF, Lu, L, Chesler, EJ, Alberts, R, Jansen, RC, Williams, RW, Cooke, MP, de Haan, G (2005) Uncovering regulatory pathways that affect hematopoietic stem cell function using 鈥榞enetical genomics鈥? Nat Genet 37: pp. 225-232 CrossRef
    6. Cheung, VG, Spielman, RS, Ewens, KG, Weber, TM, Morley, M, Burdick, JT (2005) Mapping determinants of human gene expression by regional and genome-wide association. Nature 437: pp. 1365-1369 CrossRef
    7. Stranger, BE, Nica, AC, Forrest, MS, Dimas, A, Bird, CP, Beazley, C, Ingle, CE, Dunning, M, Flicek, P, Koller, D, Montgomery, S, Deloukas, P (2007) Population genomics of human gene expression. Nat Genet 39: pp. 1217-1224 CrossRef
    8. Emilsson, V, Thorleifsson, G, Zhang, B, Leonardson, AS, Zink, F, Zhu, J, Carlson, S, Helgason, A, Walters, GB, Gunnarsdottir, S, Mouy, M, Steinthorsdottir, V, Eiriksdottir, GH, Bjornsdottir, G, Reynisdottir, I, Gudbjartsson, D, Helgadottir, A, Jonasdottir, A, Jonasdottir, A, Styrkarsdottir, U, Gretarsdottir, S, Magnusson, KP, Stefansson, H, Fossdal, R, Kristjansson, K, Gislason, HG, Stefansson, T, Leifsson, BG, Thorsteinsdottir, U, Lamb, JR (2008) Genetics of gene expression and its effect on disease. Nature 452: pp. 423-428 CrossRef
    9. Spielman, RS, Bastone, LA, Burdick, JT, Morley, M, Ewens, WJ, Cheung, VG (2007) Common genetic variants account for differences in gene expression among ethnic groups. Nat Genet 39: pp. 226-231 CrossRef
    10. Michaelson, JJ, Loguercio, S, Beyer, A (2009) Detection and interpretation of expression quantitative trait loci (eQTL). Methods 48: pp. 265-276 CrossRef
    11. Cervino, AC, Li, G, Edwards, S, Zhu, J, Laurie, C, Tokiwa, G, Lum, PY, Wang, S, Castellani, LW, Castellini, LW, Lusis, AJ, Carlson, S, Sachs, AB, Schadt, EE (2005) Integrating QTL and high-density SNP analyses in mice to identify Insig2 as a susceptibility gene for plasma cholesterol levels. Genomics 86: pp. 505-517 CrossRef
    12. Hillebrandt, S, Wasmuth, HE, Weiskirchen, R, Hellerbrand, C, Keppeler, H, Werth, A, Schirin-Sokhan, R, Wilkens, G, Geier, A, Lorenzen, J, K枚hl, J, Gressner, AM, Matern, S (2005) Complement factor 5 is a quantitative trait gene that modifies liver fibrogenesis in mice and humans. Nat Genet 37: pp. 835-843 CrossRef
    13. Wang, X, Korstanje, R, Higgins, D, Paigen, B (2004) Haplotype analysis in multiple crosses to identify a QTL gene. Genome Res 14: pp. 1767-1772 CrossRef
    14. Peirce, JL, Li, H, Wang, J, Manly, KF, Hitzemann, RJ, Belknap, JK, Rosen, GD, Goodwin, S, Sutter, TR, Williams, RW, Lu, L (2006) How replicable are mRNA expression QTL?. Mamm Genome 17: pp. 643-656 CrossRef
    15. Churchill, GA (2002) Fundamentals of experimental design for cDNA microarrays. Nat Genet 32 Suppl: pp. 490-495 CrossRef
    16. Fare, TL, Coffey, EM, Dai, H, He, YD, Kessler, DA, Kilian, KA, Koch, JE, LeProust, E, Marton, MJ, Meyer, MR, Stoughton, RB, Tokiwa, GY, Wang, Y (2003) Effects of atmospheric ozone on microarray data quality. Anal Chem 75: pp. 4672-4675 CrossRef
    17. Branham, WS, Melvin, CD, Han, T, Desai, VG, Moland, CL, Scully, AT, Fuscoe, JC (2007) Elimination of laboratory ozone leads to a dramatic improvement in the reproducibility of microarray gene expression measurements. BMC Biotechnol 7: pp. 8 CrossRef
    18. Kang, HM, Ye, C, Eskin, E (2008) Accurate discovery of expression quantitative trait loci under confounding from spurious and genuine regulatory hotspots. Genetics 180: pp. 1909-1925 CrossRef
    19. Leek, JT, Storey, JD (2007) Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet 3: pp. 1724-1735 CrossRef
    20. Listgarten, J, Kadie, C, Schadt, EE, Heckerman, D (2010) Correction for hidden confounders in the genetic analysis of gene expression. Proc Natl Acad Sci USA 107: pp. 16465-16470 CrossRef
    21. Fusi, N, Stegle, O, Lawrence, ND (2012) Joint modelling of confounding factors and prominent genetic regulators provides increased accuracy in genetical genomics studies. PLoS Comput Biol 8: pp. 1002330 CrossRef
    22. Foss, EJ, Radulovic, D, Shaffer, SA, Ruderfer, DM, Bedalov, A, Goodlett, DR, Kruglyak, L (2007) Genetic basis of proteome variation in yeast. Nat Genet 39: pp. 1369-1375 CrossRef
    23. Perlstein, EO, Ruderfer, DM, Roberts, DC, Schreiber, SL, Kruglyak, L (2007) Genetic basis of individual differences in the response to small-molecule drugs in yeast. Nat Genet 39: pp. 496-502 CrossRef
    24. Han, B, Eskin, E (2012) Interpreting meta-analyses of genome-wide association studies. PLoS Genet 8: pp. 1002555 CrossRef
    25. Smith, EN, Kruglyak, L (2008) Gene鈥揺nvironment interaction in yeast gene expression. PLoS Biol 6: pp. 83 CrossRef
    26. Devlin, B, Roeder, K (1999) Genomic control for association studies. Biometrics 55: pp. 997-1004 CrossRef
    27. Yvert, G, Brem, RB, Whittle, J, Akey, JM, Foss, E, Smith, EN, Mackelprang, R, Kruglyak, L (2003) Trans-acting regulatory variation in Saccharomyces cerevisiae, and the role of transcription factors. Nat Genet 35: pp. 57-64 CrossRef
    28. Kang, HM, Zaitlen, NA, Wade, CM, Kirby, A, Heckerman, D, Daly, MJ, Eskin, E (2008) Efficient control of population structure in model organism association mapping. Genetics 178: pp. 1709-1723 CrossRef
    29. Yu, J, Pressoir, G, Briggs, WH, Vroh Bi, I, Yamasaki, M, Doebley, JF, McMullen, MD, Gaut, BS, Nielsen, DM, Holland, JB, Kresovich, S, Buckler, ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38: pp. 203-208 CrossRef
    30. Zhao, K, Aranzana, MJ, Kim, S, Lister, C, Shindo, C, Tang, C, Toomajian, C, Zheng, H, Dean, C, Marjoram, P, Nordborg, M (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3: pp. 4 CrossRef
    31. Han, B, Eskin, E (2011) Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am J Hum Genet 88: pp. 586-598 CrossRef
    32. Stephens, M, Balding, DJ (2009) Bayesian statistical methods for genetic association studies. Nat Rev Genet 10: pp. 681-690 CrossRef
    33. Marchini, J, Howie, B, Myers, S, McVean, G, Donnelly, P (2007) A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39: pp. 906-913 CrossRef
    34. Lippert, C, Listgarten, J, Liu, Y, Kadie, CM, Davidson, RI, Heckerman, D (2011) Fast linear mixed models for genome-wide association studies. Nat Methods 8: pp. 833-835 CrossRef
  • 刊物主题:Animal Genetics and Genomics; Human Genetics; Plant Genetics & Genomics; Microbial Genetics and Genomics; Fungus Genetics; Bioinformatics;
  • 出版者:BioMed Central
  • ISSN:1465-6906
文摘
Expression quantitative trait loci (eQTL) mapping is a tool that can systematically identify genetic variation affecting gene expression. eQTL mapping studies have shown that certain genomic locations, referred to as regulatory hotspots, may affect the expression levels of many genes. Recently, studies have shown that various confounding factors may induce spurious regulatory hotspots. Here, we introduce a novel statistical method that effectively eliminates spurious hotspots while retaining genuine hotspots. Applied to simulated and real datasets, we validate that our method achieves greater sensitivity while retaining low false discovery rates compared to previous methods.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700