Fungal biomineralization in a surficial vadose setting, Temara district (Saibles D鈥橭r), northwest Morocco
详细信息    查看全文
  • 作者:Michael J. Duane
  • 关键词:Biomineralized ; Fungal filament ; Weddellite ; FESEM ; AFM studies
  • 刊名:Arabian Journal of Geosciences
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:9
  • 期:1
  • 全文大小:1,558 KB
  • 参考文献:Addaddi L, Raz S, Weiner S (2003) Calcium carbonate and its roles in biomineralization. Adv Mater 15
    Arnott HJ, Fryar A (1984) Raphide-like fungal crystals from Arlington, Texas compost. Scan Electron Microsc 4:1745鈥?750
    Arnott HJ, Webb MA (1983) The structure and formation of calcium oxalate crystal deposits on the hyphae of a wood rot fungus. Scan Electron Microsc 4:1747鈥?758
    Arp G, Thiel V, Reimer A, Michaelis W, Reitner J (1999) Biofilm expolymers control microbialite formation at thermal springs discharging into the alkaline Pyramid Lake, Nevada, USA. Sed Geology 126:159鈥?76CrossRef
    Ascaso C, Wierzchos J, Corral C, L贸pez del Valle R, Alonso J (2003) New applications of light and electron microscopic techniques for the study of microbiological inclusions in amber. J Paleon 77:1182鈥?192CrossRef
    Ascaso C, Wierzchos J, Speranza M, Guti茅rrez JC, Mart铆n A, Alonso J (2005) Fossil protists and fungi amber and rock substrates. Micropaleontology 511:59鈥?2CrossRef
    Benzerara K et al. (2006) Nanoscale detection of organic signatures in carbonate microbialites. Proc Natl Acad Sci USA 103:9440鈥?445CrossRef
    Beuvier T, Calvignac D, Delcroix GJ, Tran MK, Kodjikian S, Delorme N, Bardeau J, Gibaud A, Boury F (2011) Synthesis of hollow vaterite CaCO3 microspheres in supercritical carbon dioxide medium. J Mater Chem 21:9757鈥?761CrossRef
    Braissant O, Cailleau G, Dupraz C, Verrecchia EP (2003) Bacterially induced mineralization of calcium carbonate in terrestrial environments: the role of exopolysaccharides and amino acids. J Sediment Res 73:485鈥?90CrossRef
    Braissant O, Verrecchia EP, Aragno M (2002) Is the contribution of bacteria to terrestrial carbon budget greatly underestimated? Naturwissenschaften 89:366鈥?70CrossRef
    Burford EP, Hillier S, Gadd GM (2006) Biomineralization of fungal hyphae with calcite (CaCO3) and calcium oxalate mono- and dihydrate in carboniferous limestone microcosms. Geomicrobiology J 23:599鈥?11CrossRef
    Burford EP, Kierans M, Gadd GM (2003) Geomycology: fungi in mineral substrata. Mycologist 17:98鈥?07CrossRef
    Callot G, Mousain D, Plassard C (1985) Concentration de carbonate de calcium sur les parois des hyphes myceliens. Agronomie 5:143鈥?50CrossRef
    Chafetz HS, Wilkinson BH, Love KM (1985) Morphology and composition of non-marine carbonate cements in near-surface settings. SEPM Special Publication 36:337鈥?47
    Chen L et al. (2009) Bacteria-mediated synthesis of metal carbonate minerals with unusual morphologies and structures. Cryst Growth Des 9:743鈥?54CrossRef
    Cromack Jr K, Sollins P, Todd RL, Fogel R, Todd AW, Fender WM, Crossley ME, Crossley DA (1977) The role of oxalic acid and bicarbonate in calcium cycling by fungi and bacteria: some possible implications for soil animals. Econ Bull 25:246鈥?52
    Dorian HH, Rez P, Drach GW (1996) Evidence for aggregation in oxalate stone formation: atomic force and low voltage scanning electron microscopy. J Urol 156:1833鈥?837CrossRef
    Duane MJ (2006) Coeval biochemical and biophysical weathering processs on quaternary sanstone terraces south of Rabat (Temara), northwest Morocco. Earth Surf Proc and Landf 31:1115鈥?128CrossRef
    Duane MJ, Al-Mishwat A, Rafique M (2003) Weathering and biokarst development on marine terraces, northwest Morocco. Earth Surf Proc and Landf 28:1439鈥?449CrossRef
    Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Reviews 96:141鈥?62CrossRef
    Dupraz C, Visscher PT, Baumgartner IK, Reid RP (2004) Microbe-mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 34:595鈥?09
    Frey-Wyssling A (1981) Crystallography of the two hydrates of crystalline calcium oxalate in plants. Amer J Bot 68:130鈥?41CrossRef
    Gorbushina A (2003) Micro colonial fungi: survival potential of terrestrial vegetative structures. Astrobiology 3:543鈥?45CrossRef
    Graustein WC, Cromack K, Sollins P (1977) Calcium oxalate鈥搊ccurrence in soils and effect on nutrient and geochemical cycles. Science 198:1252鈥?254CrossRef
    Hamidi EM, Colin F, Michard A, Boulange B (2001) Isotopic tracers of the origin of Ca in a carbonate crust from Middle Atlas. Morocco Chemical Geol 176:93鈥?04CrossRef
    Harrison RS (1977) Caliche profiles: indicators of near-surface subaerial diagenesis, Barbados, West Indies. Bull Can Petrol Geol 25:123鈥?73
    Horner HT, Tiffany LH, Cody AM (1983) Formation of calcium oxalate crystals associated with apothecia of the discomycete Dasyscypha capitata. Mycologia 75:423鈥?35CrossRef
    Hraita M, El Rhaffari Y, Samaouali A, Geraud Y, Boukalouch M (2014) Petrophysical, petrological and mineralogical characterization of calcarenite rock used for monumental building in Morocco. Romanian J Materials 44:365鈥?74
    James NP (1972) Holocene and Pleistocene calcareous crust (caliche) profiles: criteria for subaerial exposure. J Sed Petrol 42:817鈥?36
    Jones B, Kahle CF (1993) Morphology, relationship, and origin of fiber and dendrite calcite crystals. J Sediment Petrol 63:1018鈥?031
    Jones D, Wilson MJ (1986) Biomineralization in crustose lichens. In: BSC L, Riding R (eds) Biomineralization in lower plants and animals, Systematics Association special vol, vol 30. Clarendon, Oxford, pp. 91鈥?06
    Kahle CF (1977) Origin of subaerial Holocene calcareous crusts: role of algae, fungi, and sparmicritization. Sedimentology 24:413鈥?35CrossRef
    Klappa CF (1979) Origin of subaerial Holocene calcareous crusts: role of algae, fungi, and sparmicritization. Sedimentology 24:413鈥?35
    Kolo K, Keppens E, Preat A, Claeys PH (2007) Experimental observations on fungal diagenesis of carbonate substrates, J Geophys Res Biogeosciences, 112(G1): doi:10.鈥?029/鈥?006JG000203 . ISSN: 0148-0227. http://鈥媤ww.鈥媋gu.鈥媜rg/鈥媝ubs/鈥媍rossref/鈥?007/鈥?006JG000203.鈥媠html
    Lapeyrie F, Picatto C, Gerard J, Dexheimer J (1990) T.E.M. study of intracellular and extracellular calcium oxalate accumulation by ectomycorrhizal fungi in pure culture or in association with eucalyptus seedlings. Symbiosis 9:163鈥?66
    Marlowe JJ (1970) Weddellite in bottom sediments from the St. Lawrence and Saguenay Rivers. J Sediment Petrol 40:499鈥?06CrossRef
    Masaphy S, Zabari L, Pastrana J, Dultz S (2009) Role of fungal mycelium in the formation of carbonate concretions in growing media鈥揳n investigation by SEM and synchroton-based X-ray tomographic microscopy. Geomicrobiology J 26:442鈥?50CrossRef
    McMaster T (2012) Atomic force microscopy of the fungi-mineral interface: applications in mineral dissolution, weathering and biogeochemistry. Curr Opin Biotechnol 23:562鈥?69CrossRef
    Obst M, Dynes JJ, Larence JR, Swerhone GDW, Benzerara K, Karunakaran C, Kaznatcheev K, Tyliszczak T, Hitchcock AP (2009) Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: a STXM study of the influence of EPS on the nucleation process. Geochim Cosmochim Acta 73:4180鈥?198CrossRef
    Phillips SE, Milnes AR, Foster RC (1987) Calcified filaments: an example of biological influences in the formation of calcrete in South Australia. Australian J Soil Res 25:405鈥?28CrossRef
    Reitner J (1993) Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia): formation and concepts. Facies 29:3鈥?0CrossRef
    Sandersius S, Rez P (2007) Morphology of crystals in calcium oxalate monohydrate kidney stones. Urol Res 35:287鈥?93CrossRef
    Simkiss K, Wilbur KM (1989) Biomineralization鈥揷ell biology and mineral deposition. Academic, San Diego, 337p
    Smits MM, Herrmann AM, Duane MJ, Duckworth OW, Bonneville S, Benning LG, Lundstrom U (2009) The fungal-mineral interface: challenges and considerations of micro-analytical developments. Fungal Biol Rev 23:122鈥?31CrossRef
    Stephens WE (2012) Whewellite and its key role in living systems. Geol Today 28:180鈥?85CrossRef
    Tuason MM, Arocena JM (2009) Calcium oxalate biomineralization by Piloderma fallax in response to various levels of calcium and phosphorus. App Enviro Micro 2009:7079鈥?085CrossRef
    Turner EC, Jones B (2005) Microscopic calcite dendrites in cold-water tufa: implications for nucleation of micrite and cement. Sediment 52:1043鈥?066CrossRef
    Verrecchia EP (1990) Litho-diagenetic implications of the calcium oxalate-carbonate biogeochemical cycle in semiarid calcretes, Nazareth, Israel. Geomicrobiology J 8:87鈥?9CrossRef
    Verrecchia EP, Braissaint O, Cailleau G (2006) The oxalate-carbonate pathway in soil carbon storage: the role of fungi and oxalotrophic bacteria. Biochemical Cycles 12:289鈥?10
    Verrecchia EP, Dumont J, Verrecchia KE (1993) Role of calcium oxalate biomineralization by fungi in the formation of calcretes: a case study from Nazareth, Israel. J Sediment Petrol 63:1000鈥?006
    Wadsten T, Moberg R (1985) Calcium oxalate hydrates on the surface of lichens. Lichenologist 17:239鈥?45CrossRef
    Wright VP (2009) The role of fungal biomineralization in the formation of Early Carboniferous soil fabrics. In: Wright VP, Tucker ME (eds) Calcretes. Blackwell, Oxford
    Zhou J, Chafetz HS (2009) Biogenic caliches in Texas: the role of organisms and effect of climate. J Sed Geol 222:207鈥?25CrossRef
  • 作者单位:Michael J. Duane (1)

    1. Department of Earth and Environmental Sciences, Kuwait University, PO Box 5969, 13060, Safat, Kuwait
  • 刊物类别:Earth and Environmental Science
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1866-7538
文摘
The mineralogy and ecology of the crystals that occur at the microbe-mineral interface, and the evolution of minerals around calcified filaments in a calcretized calcarenite from Temara (Rabat south, Morocco) are the focus of this study. From X-ray diffraction (XRD), high-resolution field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) studies, it is apparent that complexity of the interface between mineral-microbe can be investigated at the nanometre scale. Previous workers proposed a model for the evolution of the fungal filament biomineralization that describes the episodic modification of weddellite into whewellite, a phase absent from the present study. The common association of carbonate phases with microorganisms suggests that the organisms enhance conditions suitable for the growth of morphologically diverse crystal forms. A nanocrystalline calcium carbonate phase maybe a transient precursor phase of calcite mediated by the lichen Xanthoria parietina. Despite extensive studies on biomineralization, little is known about the causes of polymorph selection during fungal oxalate mineralization in nature. Keywords Biomineralized Fungal filament Weddellite FESEM AFM studies

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700