Recent advances in biosynthesis of fatty acids derived products in Saccharomyces cerevisiae via enhanced supply of precursor metabolites
详细信息    查看全文
  • 作者:Jiazhang Lian (1) (2)
    Huimin Zhao (1) (2) (3)
  • 关键词:Fatty acids ; Acetyl ; CoA ; Malonyl ; CoA ; Fatty acyl ; CoAs ; Saccharomyces cerevisiae
  • 刊名:Journal of Industrial Microbiology and Biotechnology
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:42
  • 期:3
  • 页码:437-451
  • 全文大小:1,122 KB
  • 参考文献:1. Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG (2011) Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol 90:1219鈥?227 CrossRef
    2. Bernard A, Domergue F, Pascal S, Jetter R, Renne C, Faure JD, Haslam RP, Napier JA, Lessire R, Joubes J (2012) Reconstitution of plant alkane biosynthesis in yeast demonstrates that / Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. Plant Cell 24:3106鈥?118 CrossRef
    3. Chan DI, Vogel HJ (2010) Current understanding of fatty acid biosynthesis and the acyl carrier protein. Biochem J 430:1鈥?9 CrossRef
    4. Chen L, Zhang J, Lee J, Chen WN (2014) Enhancement of free fatty acid production in / Saccharomyces cerevisiae by control of fatty acyl-CoA metabolism. Appl Microbiol Biotechnol 98:6739鈥?750 CrossRef
    5. Chen WN, Tan KY (2013) Malonate uptake and metabolism in / Saccharomyces cerevisiae. Appl Biochem Biotechnol 171:44鈥?2 CrossRef
    6. Chen Y, Daviet L, Schalk M, Siewers V, Nielsen J (2013) Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab Eng 15:48鈥?4 CrossRef
    7. Chen Y, Siewers V, Nielsen J (2012) Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in / Saccharomyces cerevisiae. PLoS ONE 7:e42475 CrossRef
    8. Chirala SS (1992) Coordinated regulation and inositol-mediated and fatty acid-mediated repression of fatty acid synthase genes in / Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 89:10232鈥?0236 CrossRef
    9. Choi JW, Da Silva NA (2014) Improving polyketide and fatty acid synthesis by engineering of the Yeast acetyl-CoA carboxylase. J Biotechnol. doi:10.1016/j.jbiotec.2014.1007.1430
    10. Choi YJ, Lee SY (2013) Microbial production of short-chain alkanes. Nature 502:571鈥?74 CrossRef
    11. Clomburg JM, Vick JE, Blankschien MD, Rodriguez-Moya M, Gonzalez R (2012) A synthetic biology approach to engineer a functional reversal of the 尾-oxidation cycle. ACS Synth Biol 1:541鈥?54 CrossRef
    12. Crook NC, Schmitz AC, Alper HS (2014) Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering. ACS Synth Biol 3:307鈥?13 CrossRef
    13. de Jong BW, Shi S, Siewers V, Nielsen J (2014) Improved production of fatty acid ethyl esters in / Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway. Microb Cell Fact 13:39 CrossRef
    14. Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R (2011) Engineered reversal of the 尾-oxidation cycle for the synthesis of fuels and chemicals. Nature 476:355鈥?59 CrossRef
    15. Drinnenberg IA, Weinberg DE, Xie KT, Mower JP, Wolfe KH, Fink GR, Bartel DP (2009) RNAi in budding yeast. Science 326:544鈥?50 CrossRef
    16. Du J, Shao Z, Zhao H (2011) Engineering microbial factories for synthesis of value-added products. J Ind Microbiol Biotechnol 38:873鈥?90 CrossRef
    17. Du J, Yuan Y, Si T, Lian J, Zhao H (2012) Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res 40:e142 CrossRef
    18. Eriksen DT, HamediRad M, Zhao H (2014) Enhancing biodiesel production via orthogonal fatty acid biosynthesis. ACS Synth Biol:Submitted
    19. Eriksen DT, Lian J, Zhao H (2014) Protein design for pathway engineering. J Struct Biol 185:234鈥?42 CrossRef
    20. Fatland BL, Ke J, Anderson MD, Mentzen WI, Cui LW, Allred CC, Johnston JL, Nikolau BJ, Wurtele ES (2002) Molecular characterization of a heteromeric ATP-citrate lyase that generates cytosolic acetyl-coenzyme A in / Arabidopsis. Plant Physiol 130:740鈥?56 CrossRef
    21. Feng X, Lian J, Zhao H (2014) Systems metabolic engineering of / Saccharomyces cerevisiae to improve 1-hexadecanol production. Metab Eng:Minor revision
    22. Flikweert MT, de Swaaf M, van Dijken JP, Pronk JT (1999) Growth requirements of pyruvate-decarboxylase-negative / Saccharomyces cerevisiae. FEMS Microbiol Lett 174:73鈥?9 CrossRef
    23. Gago G, Diacovich L, Arabolaza A, Tsai SC, Gramajo H (2011) Fatty acid biosynthesis in actinomycetes. FEMS Microbiol Rev 35:475鈥?97 CrossRef
    24. Handke P, Lynch SA, Gill RT (2011) Application and engineering of fatty acid biosynthesis in / Escherichia coli for advanced fuels and chemicals. Metab Eng 13:28鈥?7 CrossRef
    25. Harger M, Zheng L, Moon A, Ager C, An JH, Choe C, Lai YL, Mo B, Zong D, Smith MD, Egbert RG, Mills JH, Baker D, Pultz IS, Siegel JB (2013) Expanding the product profile of a microbial alkane biosynthetic pathway. ACS Synth Biol 2:59鈥?2 CrossRef
    26. Hoffmeister M, Piotrowski M, Nowitzki U, Martin W (2005) Mitochondrial trans-2-enoyl-CoA reductase of wax ester fermentation from / Euglena gracilis defines a new family of enzymes involved in lipid synthesis. J Biol Chem 280:4329鈥?338 CrossRef
    27. Hong KK, Nielsen J (2012) Metabolic engineering of / Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 69:2671鈥?690 CrossRef
    28. Howard TP, Middelhaufe S, Moore K, Edner C, Kolak DM, Taylor GN, Parker DA, Lee R, Smirnoff N, Aves SJ, Love J (2013) Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in / Escherichia coli. Proc Natl Acad Sci U S A 110:7636鈥?641 CrossRef
    29. Inui H, Miyatake K, Nakano Y, Kitaoka S (1984) Fatty acid synthesis in mitochondria of / Euglena gracilis. Eur J Biochem 142:121鈥?26 CrossRef
    30. Inui H, Ono K, Miyatake K, Nakano Y, Kitaoka S (1987) Purification and characterization of pyruvate:NADP+ oxidoreductase in / Euglena gracilis. J Biol Chem 262:9130鈥?135
    31. Jing F, Cantu DC, Tvaruzkova J, Chipman JP, Nikolau BJ, Yandeau-Nelson MD, Reilly PJ (2011) Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity. BMC Biochem 12:44 CrossRef
    32. Knudsen J, Jensen MV, Hansen JK, Faergeman NJ, Neergaard TB, Gaigg B (1999) Role of acylCoA binding protein in acylCoA transport, metabolism and cell signaling. Mol Cell Biochem 192:95鈥?03 CrossRef
    33. Kocharin K, Chen Y, Siewers V, Nielsen J (2012) Engineering of acetyl-CoA metabolism for the improved production of polyhydroxybutyrate in / Saccharomyces cerevisiae. AMB Express 2:52 CrossRef
    34. Kocharin K, Siewers V, Nielsen J (2013) Improved polyhydroxybutyrate production by / Saccharomyces cerevisiae through the use of the phosphoketolase pathway. Biotechnol Bioeng 110:2216鈥?224 CrossRef
    35. Kozak BU, van Rossum HM, Benjamin KR, Wu L, Daran JM, Pronk JT, van Maris AJ (2013) Replacement of the / Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis. Metab Eng 21:46鈥?9 CrossRef
    36. Krivoruchko A, Serrano-Amatriain C, Chen Y, Siewers V, Nielsen J (2013) Improving biobutanol production in engineered / Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism. J Ind Microbiol Biotechnol 40:1051鈥?056 CrossRef
    37. Leber C, Da Silva NA (2014) Engineering of / Saccharomyces cerevisiae for the synthesis of short chain fatty acids. Biotechnol Bioeng 111:347鈥?58 CrossRef
    38. Lee SH, Stephens JL, Englund PT (2007) A fatty-acid synthesis mechanism specialized for parasitism. Nat Rev Microbiol 5:287鈥?97 CrossRef
    39. Lee SH, Stephens JL, Paul KS, Englund PT (2006) Fatty acid synthesis by elongases in trypanosomes. Cell 126:691鈥?99 CrossRef
    40. Leibundgut M, Maier T, Jenni S, Ban N (2008) The multienzyme architecture of eukaryotic fatty acid synthases. Curr Opin Struct Biol 18:714鈥?25 CrossRef
    41. Lennen RM, Pfleger BF (2012) Engineering / Escherichia coli to synthesize free fatty acids. Trends Biotechnol 30:659鈥?67 CrossRef
    42. Li X, Guo D, Cheng Y, Zhu F, Deng Z, Liu T (2014) Overproduction of fatty acids in engineered / Saccharomyces cerevisiae. Biotechnol Bioeng. doi:10.1002/bit.25239
    43. Lian J, Si T, Nair NU, Zhao H (2014) Design and construction of acetyl-CoA overproducing / Saccharomyces cerevisiae strains. Metab Eng 24:139鈥?49 CrossRef
    44. Lian J, Zhao H (2014) Reversal of the 尾-oxidation cycle in / Saccharomyces cerevisiae for production of fuels and chemicals. ACS Synth Biol. doi:10.1021/sb500243c
    45. Lu JZ, Lee PJ, Waters NC, Prigge ST (2005) Fatty acid synthesis as a target for antimalarial drug discovery. Comb Chem High T Scr 8:15鈥?6
    46. Lu X (2010) A perspective: photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria. Biotechnol Adv 28:742鈥?46 CrossRef
    47. Muller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AG, Martin WF (2012) Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 76:444鈥?95 CrossRef
    48. Overkamp KM, Kotter P, van der Hoek R, Schoondermark-Stolk S, Luttik MA, van Dijken JP, Pronk JT (2002) Functional analysis of structural genes for NAD+-dependent formate dehydrogenase in / Saccharomyces cerevisiae. Yeast 19:509鈥?20 CrossRef
    49. Ozaydin B, Burd H, Lee TS, Keasling JD (2013) Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production. Metab Eng 15:174鈥?83 CrossRef
    50. Panagiotou G, Andersen MR, Grotkjaer T, Regueira TB, Hofmann G, Nielsen J, Olsson L (2008) Systems analysis unfolds the relationship between the phosphoketolase pathway and growth in / Aspergillus nidulans. PLoS ONE 3:e3847 CrossRef
    51. Papini M, Nookaew I, Siewers V, Nielsen J (2012) Physiological characterization of recombinant / Saccharomyces cerevisiae expressing the / Aspergillus nidulans phosphoketolase pathway: validation of activity through 13C-based metabolic flux analysis. Appl Microbiol Biotechnol 95:1001鈥?010 CrossRef
    52. Ragsdale SW (2003) Pyruvate ferredoxin oxidoreductase and its radical intermediate. Chem Rev 103:2333鈥?346 CrossRef
    53. Runguphan W, Keasling JD (2014) Metabolic engineering of / Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab Eng 21:103鈥?13 CrossRef
    54. Saerens SM, Verstrepen KJ, Van Laere SD, Voet AR, Van Dijck P, Delvaux FR, Thevelein JM (2006) The / Saccharomyces cerevisiae / EHT1 and / EEB1 genes encode novel enzymes with medium-chain fatty acid ethyl ester synthesis and hydrolysis capacity. J Biol Chem 281:4446鈥?456 CrossRef
    55. Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559鈥?62 CrossRef
    56. Shi S, Chen Y, Siewers V, Nielsen J (2014) Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1. MBio 5:01114鈥揺01130
    57. Shi S, Valle-Rodriguez JO, Khoomrung S, Siewers V, Nielsen J (2012) Functional expression and characterization of five wax ester synthases in / Saccharomyces cerevisiae and their utility for biodiesel production. Biotechnol Biofuels 5:7 CrossRef
    58. Shi S, Valle-Rodriguez JO, Siewers V, Nielsen J (2014) Engineering of chromosomal wax ester synthase integrated / Saccharomyces cerevisiae mutants for improved biosynthesis of fatty acid ethyl esters. Biotechnol Bioeng. doi:10.1002/bit.25234
    59. Shiba Y, Paradise EM, Kirby J, Ro DK, Keasling JD (2007) Engineering of the pyruvate dehydrogenase bypass in / Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng 9:160鈥?68 CrossRef
    60. Shin GH, Veen M, Stahl U, Lang C (2012) Overexpression of genes of the fatty acid biosynthetic pathway leads to accumulation of sterols in / Saccharomyces cerevisiae. Yeast 29:371鈥?83 CrossRef
    61. Shin SY, Jung SM, Kim MD, Han NS, Seo JH (2012) Production of resveratrol from tyrosine in metabolically engineered / Saccharomyces cerevisiae. Enzyme Microb Technol 51:211鈥?16 CrossRef
    62. Si T, Luo Y, Bao Z, Zhao H (2014) RNAi-assisted genome evolution in / Saccharomyces cerevisiae for complex phenotype engineering. ACS Synth Biol. doi:10.1021/sb500074a
    63. Sonderegger M, Schumperli M, Sauer U (2004) Metabolic engineering of a phosphoketolase pathway for pentose catabolism in / Saccharomyces cerevisiae. Appl Environ Microbiol 70:2892鈥?897 CrossRef
    64. Starai VJ, Escalante-Semerena JC (2004) Acetyl-coenzyme A synthetase (AMP forming). Cell Mol Life Sci 61:2020鈥?030 CrossRef
    65. Strijbis K, Distel B (2010) Intracellular acetyl unit transport in fungal carbon metabolism. Eukaryot Cell 9:1809鈥?815 CrossRef
    66. Tang X, Chen WN (2014) Investigation of fatty acid accumulation in the engineered / Saccharomyces cerevisiae under nitrogen limited culture condition. Bioresour Technol 162:200鈥?06 CrossRef
    67. Tang X, Feng H, Chen WN (2013) Metabolic engineering for enhanced fatty acids synthesis in / Saccharomyces cerevisiae. Metab Eng 16:95鈥?02 CrossRef
    68. Tavares S, Grotkjaer T, Obsen T, Haslam RP, Napier JA, Gunnarsson N (2011) Metabolic engineering of / Saccharomyces cerevisiae for production of Eicosapentaenoic acid, using a novel 螖5-Desaturase from / Paramecium tetraurelia. Appl Environ Microbiol 77:1854鈥?861 CrossRef
    69. Tehlivets O, Scheuringer K, Kohlwein SD (2007) Fatty acid synthesis and elongation in yeast. Biochim Biophys Acta 1771:255鈥?70 CrossRef
    70. Thompson RA, Trinh CT ((2014)) Enhancing fatty acid ethyl ester production in / Saccharomyces cerevisiae through metabolic engineering and medium optimization. Biotechnol Bioeng. doi:10.1002/bit.25292
    71. Trotter PJ (2001) The genetics of fatty acid metabolism in / Saccharomyces cerevisiae. Annu Rev Nutr 21:97鈥?19 CrossRef
    72. Valle-Rodriguez JO, Shi SB, Siewers V, Nielsen J (2014) Metabolic engineering of / Saccharomyces cerevisiae for production of fatty acid ethyl esters, an advanced biofuel, by eliminating non-essential fatty acid utilization pathways. Appl Energ 115:226鈥?32 CrossRef
    73. van Roermund CW, Waterham HR, Ijlst L, Wanders RJ (2003) Fatty acid metabolism in / Saccharomyces cerevisiae. Cell Mol Life Sci 60:1838鈥?851 CrossRef
    74. Vorapreeda T, Thammarongtham C, Cheevadhanarak S, Laoteng K (2012) Alternative routes of acetyl-CoA synthesis identified by comparative genomic analysis: involvement in the lipid production of oleaginous yeast and fungi. Microbiology 158:217鈥?28 CrossRef
    75. Wang Y, Chen H, Yu O (2014) A plant malonyl-CoA synthetase enhances lipid content and polyketide yield in yeast cells. Appl Microbiol Biotechnol 98:5435鈥?447 CrossRef
    76. Wattanachaisaereekul S, Lantz AE, Nielsen ML, Nielsen J (2008) Production of the polyketide 6-MSA in yeast engineered for increased malonyl-CoA supply. Metab Eng 10:246鈥?54 CrossRef
    77. Xue Z, Sharpe PL, Hong SP, Yadav NS, Xie D, Short DR, Damude HG, Rupert RA, Seip JE, Wang J, Pollak DW, Bostick MW, Bosak MD, Macool DJ, Hollerbach DH, Zhang H, Arcilla DM, Bledsoe SA, Croker K, McCord EF, Tyreus BD, Jackson EN, Zhu Q (2013) Production of omega-3 eicosapentaenoic acid by metabolic engineering of / Yarrowia lipolytica. Nat Biotechnol 31:734鈥?40 CrossRef
    78. Yu KO, Jung J, Kim SW, Park CH, Han SO (2012) Synthesis of FAEEs from glycerol in engineered / Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase. Biotechnol Bioeng 109:110鈥?15 CrossRef
    79. Zaidi N, Swinnen JV, Smans K (2012) ATP-citrate lyase: a key player in cancer metabolism. Cancer Res 72:3709鈥?714 CrossRef
    80. Zha W, Shao Z, Frost JW, Zhao H (2004) Rational pathway engineering of type I fatty acid synthase allows the biosynthesis of triacetic acid lactone from d -glucose / in vivo. J Am Chem Soc 126:4534鈥?535 CrossRef
    81. Zhang F, Keasling JD (2011) Biosensors and their applications in microbial metabolic engineering. Trends Microbiol 19:323鈥?29 CrossRef
    82. Zhang F, Rodriguez S, Keasling JD (2011) Metabolic engineering of microbial pathways for advanced biofuels production. Curr Opin Biotechnol 22:775鈥?83 CrossRef
    83. Zhang J, Vaga S, Chumnanpuen P, Kumar R, Vemuri GN, Aebersold R, Nielsen J (2011) Mapping the interaction of Snf1 with TORC1 in / Saccharomyces cerevisiae. Mol Syst Biol 7:545 CrossRef
    84. Zhang M, Galdieri L, Vancura A (2013) The yeast AMPK homolog SNF1 regulates acetyl coenzyme A homeostasis and histone acetylation. Mol Cell Biol 33:4701鈥?717 CrossRef
  • 作者单位:Jiazhang Lian (1) (2)
    Huimin Zhao (1) (2) (3)

    1. Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
    2. Energy Biosciences Institute, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
    3. Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Chemistry
    Biotechnology
    Genetic Engineering
    Biochemistry
    Bioinformatics
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1476-5535
文摘
Fatty acids or their activated forms, fatty acyl-CoAs and fatty acyl-ACPs, are important precursors to synthesize a wide variety of fuels and chemicals, including but not limited to free fatty acids (FFAs), fatty alcohols (FALs), fatty acid ethyl esters (FAEEs), and alkanes. However, Saccharomyces cerevisiae, an important cell factory, does not naturally accumulate fatty acids in large quantities. Therefore, metabolic engineering strategies were carried out to increase the glycolytic fluxes to fatty acid biosynthesis in yeast, specifically to enhance the supply of precursors, eliminate competing pathways, and bypass the host regulatory network. This review will focus on the genetic manipulation of both structural and regulatory genes in each step for fatty acids overproduction in S. cerevisiae, including from sugar to acetyl-CoA, from acetyl-CoA to malonyl-CoA, and from malonyl-CoA to fatty acyl-CoAs. The downstream pathways for the conversion of fatty acyl-CoAs to the desired products will also be discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700