Hydrocarbons, the advanced biofuels produced by different organisms, the evidence that alkanes in petroleum can be renewable
详细信息    查看全文
  • 作者:Wen-Juan Fu ; Zhe Chi ; Zai-Chao Ma ; Hai-Xiang Zhou…
  • 关键词:Petroleum ; Hydrocarbons ; Renewable biofuels ; Marine yeasts ; Biosynthesis
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:99
  • 期:18
  • 页码:7481-7494
  • 全文大小:946 KB
  • 参考文献:Bagaeva TV, Zinurova EE (2004) Comparative characterization of extracellular and intracellular hydrocarbons of Clostridium pasteurianum. Biochem Mosc 69:427鈥?28[translated from Biokhimiya]CrossRef
    Beller HR, Goh EB, Keasling JD (2010) Genes involved in long-chain alkene biosynthesis in Micrococcus luteus. Appl Environ Microbiol 76:1212鈥?223PubMed Central CrossRef PubMed
    Belyaeva MI, Zolotukhina LM, Bagaeva TV (1995) Method for the production of liquid hydrocarbons. Invention Certificate SU2027760 [in Russian].
    Bernard A, Domergue F, Pascal S, Jetter R, Renne C, Faure JD, Haslam RP, Napier JA, Lessire R, Joub猫s J (2012) Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. Plant Cell 24:3106鈥?118PubMed Central CrossRef PubMed
    Bernard A, Joub猫s J (2013) Arabidopsis cuticular waxes: advances in synthesis, export and regulation. Prog Lipid Res 52:110鈥?29CrossRef PubMed
    Blazeck J, Liu L, Knight R, Alper HS (2013) Heterologous production of pentane in the oleaginous yeast Yarrowia lipolytica. J Biotechnol 165:184鈥?94CrossRef PubMed
    Buijs NA, Zhou YJ, Siewers V, Nielsen J (2014) Long-chain alkane production by the yeast Saccharomyces cerevisiae. Biotechnol Bioeng. doi:10.鈥?002/鈥媌it.鈥?5522
    Chi ZM, Zhang T, Cao TS, Liu XY, Cui W, Zhao CH (2011) Biotechnological potential of inulin for bioprocesses. Bioresour Technol 10:4295鈥?303CrossRef
    Chi Z, Wang XX, Geng Q, Chi ZM (2013) Role of a GATA-type transcriptional repressor Sre1 in regulation of siderophore biosynthesis in the marine-derived Aureobasidium pullulans HN6.2. Biometals 26:955鈥?67CrossRef PubMed
    Choi YJ, Lee SY (2013) Microbial production of short-chain alkanes. Nature 502:571鈥?74CrossRef PubMed
    Coates RC, Podell S, Korobeynikov A, Lapidus A, Pevzner P, Sherman DH (2014) Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways. PLoS One 9:e85140. doi:10.鈥?371/鈥媕ournal.鈥?pone.鈥?085140 PubMed Central CrossRef PubMed
    Gianoulis TA, Griffin MA, Spakowicz DJ, Dunican BF, Alpha CJ, Sboner A, Sismour AM, Kodira C, Egholm M, Church GM, Gerstein MB, Strobel SA (2012) Genomic analysis of the hydrocarbon-producing, cellulolytic, endophytic fungus Ascocoryne sarcoides. PLoS Genet 8:1鈥?9CrossRef
    Gostin膷ar C, Ohm RA, Kogej T, Sonjak S, Turk M, Zajc J, Zalar P, Grube M, Sun H, Han J, Sharma A, Chiniquy J, Ngan CY, Lipzen A, Barry K, Grigoriev IV, Gunde-Cimerman N (2014) Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genomics 15:549PubMed Central CrossRef PubMed
    Harger M, Zheng L, Moon A, Ager C, An JH, Choe C, Lai YL, Mo B, Zong D, Smith MD, Robert G, Egbert RG, Jeremy H, Mills JH, Baker D, Pultz IS, Siegel JB (2013) Expanding the product profile of a microbial alkane biosynthetic pathway. ACS Synth Biol 2:59鈥?2CrossRef PubMed
    Howard TP, Middelhaufe S, Moore K, Edner C, Kolak DM, Taylor GN, Parker DA, Lee R, Smirnoff N, Aves SJ, Love J (2013) Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli. Proc Natl Acad Sci U S A 110:7636鈥?641PubMed Central CrossRef PubMed
    Jansson C (2012) Metabolic engineering of cyanobacteria for direct conversion of CO2 to hydrocarbon biofuels. In: U. Luttge et al. (eds.), Progress in botany Vol. 73, Progress in botany 73, Springer-Verlag Berlin Heidelberg. Pp: 81鈥?3.
    Kallio P, Pa鈥檚ztor A, Thiel K, Akhtar MK, Jones PR (2014) An engineered pathway for the biosynthesis of renewable propane. Nat Commun 5:473CrossRef
    Kunst L, Samuels L (2009) Plant cuticles shine: advances in wax biosynthesis and export. Curr Open Plant Biol 12:721鈥?27CrossRef
    Ladygina N, Dedyukhina EG, Vainshtein MB (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41:1001鈥?014CrossRef
    Lennen RM, Braden DJ, West RM, Dumesic JA, Pfleger BF (2010) A process for mcrobial hydrocarbon synthesis: overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes. Biotechnol Bioeng 106:193鈥?02CrossRef PubMed
    Li M, Liu GL, Chi Z, Chi ZM (2010) Single cell oil production from hydrolysate of cassava starch by marine-derived yeast Rhodotorula mucilaginosa TJY15a. Biom Bioenergy 4:101鈥?07CrossRef
    Liu A, Zhu T, Lu X, Song L (2013) Hydrocarbon profiles and phylogenetic analyses of diversified cyanobacterial species. Appl Energy 111:383鈥?93CrossRef
    Liu YY, Chi Z, Wang ZP, Liu GL, Chi ZM (2014a) Heavy oils, principally long鈥慶hain n鈥慳lkanes secreted by Aureobasidium pullulans var. melanogenum strain P5 isolated from mangrove system. J Ind Microbiol Biotechnol 41:1329鈥?337CrossRef PubMed
    Liu Y, Wang C, Yan J, Zhang W, Guan W, Lu X, Li S (2014b) Hydrogen peroxide-independent production of 伪-alkenes by OleTJE P450 fatty acid decarboxylase. Biotechnol Biofuels 7:28PubMed Central CrossRef PubMed
    Liu Q, Wu K, Cheng Y, Lu L, Xiao E, Zhang Y, Deng Z, Liu T (2015) Engineering aniterative polyketide pathway in Escherichia coli results in single-form alkene and alkane overproduction. Metab Eng 28:82鈥?0CrossRef PubMed
    Lux TM, Lee R, Love J (2011) Complete genome sequence of a free-living Vibrio furnissii sp. nov. strain (NCTC 11218). J Bacteriol 193:1487鈥?488PubMed Central CrossRef PubMed
    Ma ZC, Liu NN, Chi Z, Liu GL, Chi ZM (2015) Genetic modification of the marine-isolated yeast Aureobasidium melanogenum P16 for efficient pullulan production from inulin. Mar Biotechnol 17:511鈥?22CrossRef PubMed
    Mallette ND, Pankrantz EM, Busse S, Strobel GA, Carlson RP, Peyton B (2014) Evaluation of cellulose as a substrate for hydrocarbon fuel production by Ascocoryne sarcoides (NRRL 50072). J Sustain Bioen Syst 4:33鈥?9CrossRef
    Mendez-Perez D, Begemann MB, Pfleger BF (2011) Modular synthase-encoding gene involved in alfa-olefin biosynthesis in Synechococcus sp. strain PCC 7002. Appl Environ Microbiol 77:4264鈥?267
    Nikolaev YA, Panikov NS, Lukin SM, Osipov GA (2001) Saturated C21鈥揅33 hydrocarbons are involved in the self-regulation of Pseudomonas fluorescens adhesion to a glass surface. Microbiology (Moscow) 70:174鈥?81[translated from Mikrobiologiya]CrossRef
    Park MO (2005) New pathway for long-chain n-alkane synthesis via 1-alcohol in Vibrio furnissii M1. J Bacteriol 187:1426鈥?429PubMed Central CrossRef PubMed
    Park MO, Heguri KK, Hirata K, Miyamoto K (2005) Production of alternatives to fuel oil from organic waste by the alkane-producing bacterium, Vibrio furnissii M1. J Appl Microbiol 98:324鈥?31CrossRef PubMed
    Qiu Y, Tittiger C, Wicker-Thomas C, Le Goff G, Young S, Wajnberg E (2012) An insect-specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proc Natl Acad Sci U S A 109:14,858鈥?4,863CrossRef
    Rodriguez GM, Atsumi S (2014) Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichiacoli. Metab Eng 25:227鈥?37CrossRef PubMed
    Rude MA, Baron TS, Brubaker S, Alibhai M, Del Cardayre SB, Schirmer A (2011) Terminal olefin (1-alkene) biosynthesis by a novel p450 fatty acid decarboxylase from jeotgalicoccus species. Appl Environ Microbiol 77:1718鈥?727PubMed Central CrossRef PubMed
    Schirmer A, Rude MA, Li XZ, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559鈥?62CrossRef PubMed
    Strobel GA (2014) The story of mycodiesel. Curr Opin Microbiol 19:52鈥?8CrossRef PubMed
    Strobel GA (2015) Bioprospecting-fuels from fungi. Biotechnol Lett. doi:10.鈥?007/鈥媠10529-015-1773-9 PubMed
    Sukovich DJ, Seffernick JL, Richman JE, Gralnick JA, Wackett LP (2010) Wide spread head-to-head hydrocarbon biosynthesis in bacteria and role of oleA. Appl Environ Microbiol 76:3850鈥?862PubMed Central CrossRef PubMed
    Wackett LP, Frias JA, Seffernick JL, Sukovich DJ, Cameron SM (2007) Genomic and Biochemical studies demonstrating the absence of an alkane-producing phenotype in Vibrio furnissii M1. Appl Environ Microbiol 73(22):7192鈥?198
    Wang JM, Chi Z, Zhang T, Liu GL, Chi ZM (2011) 18S rDNA integration of the exo-inulinase gene into chromosomes of the high ethanol producing yeast Saccharomyces sp. W0 for direct conversion of inulin to bioethanol. Biom Bioen 35:3032鈥?039CrossRef
    Wang GY, Chi Z, Song B, Wang ZP, Chi ZM (2012) High level lipid production by a novel inulinase-producing yeast Pichia guilliermondii Pcla22. Bioresour Technol 124:77鈥?2CrossRef PubMed
    Wang W, Liu X, Lu X (2013) Engineering cyanobacteria to improve photo-synthetic production of alka(e)nes. Biotechnol Biofuel 6:69. doi:10.鈥?186/鈥?754-6834-6-69 CrossRef
    Wang CL, Li Y, Xin FH, Liu YY, Chi ZM (2014a) Single cell oil production by Aureobasidium pullulans var. melanogenum P10 isolated from mangrove systems for biodiesel making. Process Biochem 49:725鈥?31CrossRef
    Wang ZP, Fu WJ, Xu HM, Chi ZM (2014b) Direct conversion of inulin into cell lipid by an inulinase-producing yeast Rhodosporidium toruloides 2F5. Bioresour Technol 161:131鈥?36CrossRef PubMed
    Wang GY, Zhang Y, Chi Z, Liu GL, Wang ZP, Chi ZM (2015) Role of pyruvate carboxylase in accumulation of intracellular lipid of the oleaginous yeast Yarrowia lipolytica ACA-DC 50109. Appl Microbiol Biotechnol 99:1637鈥?645CrossRef PubMed
    Xu L, Wang SK, Wang F, Guo C, Liu CZ (2014) Improved biomass and Hydrocarbon productivity of Botryococcus braunii by periodic ultrasound stimulation. Bioenerg Res 7:986鈥?92CrossRef
    Yoshino T, Liang Y, Arai D, Maeda Y, Honda T, Muto M, Kakunaka N, Tanaka T (2015) Alkane production by the marine cyanobacterium Synechococcus sp. NKBG15041c possessing the 伪-olefin biosynthesis pathway. Appl Microbiol Biotechnol 99:1521鈥?529CrossRef PubMed
  • 作者单位:Wen-Juan Fu (1)
    Zhe Chi (1)
    Zai-Chao Ma (1)
    Hai-Xiang Zhou (1)
    Guang-Lei Liu (1)
    Ching-Fu Lee (2)
    Zhen-Ming Chi (1)

    1. College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
    2. Department of Applied Science, National Hsinchu University of Education, Hsinchu, Taiwan
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
It is generally regarded that the petroleum cannot be renewable. However, in recent years, it has been found that many marine cyanobacteria, some eubacteria, engineered Escherichia coli, some endophytic fungi, engineered yeasts, some marine yeasts, plants, and insects can synthesize hydrocarbons with different carbon lengths. If the organisms, especially some native microorganisms and engineered bacteria and yeasts, can synthesize and secret a large amount of hydrocarbons within a short period, alkanes in the petroleum can be renewable. It has been documented that there are eight pathways for hydrocarbon biosynthesis in different organisms. Unfortunately, most of native microorganisms, engineered E. coli and engineered yeasts, only synthesize a small amount of intracellular and extracellular hydrocarbons. Recently, Aureobasidium pullulans var. melanogenum isolated from a mangrove ecosystem has been found to be able to synthesize and secret over 21.5 g/l long-chain hydrocarbons with a yield of 0.275 g/g glucose and a productivity of 0.193 g/l/h within 5 days. The yeast may have highly potential applications in alkane production. Keywords Petroleum Hydrocarbons Renewable biofuels Marine yeasts Biosynthesis

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700