A Perspective on the Clinical Translation of Scaffolds for Tissue Engineering
详细信息    查看全文
  • 作者:Matthew J. Webber (1)
    Omar F. Khan (1)
    Stefanie A. Sydlik (1)
    Benjamin C. Tang (1)
    Robert Langer (1) (2) (3) (4)

    1. Koch Institute for Integrative Cancer Research
    ; Massachusetts Institute of Technology ; 77 Massachusetts Avenue ; Room 76-661 ; Cambridge ; MA ; 02139 ; USA
    2. Department of Chemical Engineering
    ; Massachusetts Institute of Technology ; Cambridge ; MA ; 02139 ; USA
    3. Institute for Medical Engineering and Science
    ; Massachusetts Institute of Technology ; Cambridge ; MA ; 02139 ; USA
    4. Harvard-MIT Division of Health Sciences and Technology
    ; Massachusetts Institute of Technology ; Cambridge ; MA ; 02139 ; USA
  • 关键词:Stem cells ; Scaffolds ; Engineering constraints ; FDA approval ; Entrepreneurial biotechnology ; Material properties
  • 刊名:Annals of Biomedical Engineering
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:43
  • 期:3
  • 页码:641-656
  • 全文大小:406 KB
  • 参考文献:1. Abarrategi, A, Fernandez-Valle, ME, Desmet, T, Castejon, D, Civantos, A, Moreno-Vicente, C, Ramos, V, Sanz-Casado, JV, Martinez-Vazquez, FJ, Dubruel, P, Miranda, P, Lopez-Lacomba, JL (2012) Label-free magnetic resonance imaging to locate live cells in three-dimensional porous scaffolds. J. R. Soc. Interface R. Soc. 9: pp. 2321-2331
    2. Anthanasiou, KA, Darling, EM, Hu, JC (2010) Articular Cartilage Tissue Engineering. Morgan and Claypool Publishers, San Rafael
    3. Arenas-Herrera, JE, Ko, IK, Atala, A, Yoo, JJ (2013) Decellularization for whole organ bioengineering. Biomed. Mater. 8: pp. 014106
    4. Atala, A, Bauer, SB, Soker, S, Yoo, JJ, Retik, AB (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367: pp. 1241-1246
    5. Badylak, SF (2007) The extracellular matrix as a biologic scaffold material. Biomaterials 28: pp. 3587-3593
    6. Badylak, SF, Gilbert, TW (2008) Immune response to biologic scaffold materials. Semin. Immunol. 20: pp. 109-116
    7. Bago, JR, Aguilar, E, Alieva, M, Soler-Botija, C, Vila, OF, Claros, S, Andrades, JA, Becerra, J, Rubio, N, Blanco, J (2013) In vivo bioluminescence imaging of cell differentiation in biomaterials: a platform for scaffold development. Tissue Eng. Part A 19: pp. 593-603
    8. Bell, E, Ehrlich, HP, Buttle, DJ, Nakatsuji, T (1981) Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science 211: pp. 1052-1054
    9. Bello, YM, Falabella, AF, Eaglstein, WH (2001) Tissue-engineered skin. Current status in wound healing. Am. J. Clin. Dermatol. 2: pp. 305-313
    10. Benton, JA, Fairbanks, BD, Anseth, KS (2009) Characterization of valvular interstitial cell function in three dimensional matrix metalloproteinase degradable peg hydrogels. Biomaterials 30: pp. 6593-6603
    11. Bosman, FT, Stamenkovic, I (2003) Functional structure and composition of the extracellular matrix. J. Pathol. 200: pp. 423-428
    12. Burg, KJ, Porter, S, Kellam, JF (2000) Biomaterial developments for bone tissue engineering. Biomaterials 21: pp. 2347-2359
    13. Burke, JF, Yannas, IV, Quinby, WC, Bondoc, CC, Jung, WK (1981) Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann. Surg. 194: pp. 413-428
    14. Caplan, AI, Dennis, JE (2006) Mesenchymal stem cells as trophic mediators. J. Cell. Biochem. 98: pp. 1076-1084
    15. Chan, BP, Leong, KW (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur. Spine J. 17: pp. 467-479
    16. Chertok, B, Webber, MJ, Succi, MD, Langer, R (2013) Drug delivery interfaces in the 21st century: from science fiction ideas to viable technologies. Mol. Pharm. 10: pp. 3531-3543
    17. Cui, X, Boland, T (2009) Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30: pp. 6221-6227
    18. Daly, KA, Liu, S, Agrawal, V, Brown, BN, Huber, A, Johnson, SA, Reing, J, Sicari, B, Wolf, M, Zhang, X, Badylak, SF (2012) The host response to endotoxin-contaminated dermal matrix. Tissue Eng. Part A 18: pp. 1293-1303
    19. Dang, TT, Thai, AV, Cohen, J, Slosberg, JE, Siniakowicz, K, Doloff, JC, Ma, M, Hollister-Lock, J, Tang, KM, Gu, Z, Cheng, H, Weir, GC, Langer, R, Anderson, DG (2013) Enhanced function of immuno-isolated islets in diabetes therapy by co-encapsulation with an anti-inflammatory drug. Biomaterials 34: pp. 5792-5801
    20. Davis, GE, Bayless, KJ, Davis, MJ, Meininger, GA (2000) Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules. Am. J. Pathol. 156: pp. 1489-1498
    21. Derby, B (2012) Printing and prototyping of tissues and scaffolds. Science 338: pp. 921-926
    22. Summa, PG, Kingham, PJ, Campisi, CC, Raffoul, W, Kalbermatten, DF (2014) Collagen (neuragen((r))) nerve conduits and stem cells for peripheral nerve gap repair. Neurosci. Lett. 572: pp. 26-31
    23. Diederichs, S, Baral, K, Tanner, M, Richter, W (2012) Interplay between local versus soluble transforming growth factor-beta and fibrin scaffolds: role of cells and impact on human mesenchymal stem cell chondrogenesis. Tissue Eng. Part A 18: pp. 1140-1150
    24. Elliott, RB, Escobar, L, Calafiore, R, Basta, G, Garkavenko, O, Vasconcellos, A, Bambra, C (2005) Transplantation of micro- and macroencapsulated piglet islets into mice and monkeys. Transplant. Proc. 37: pp. 466-469
    25. Falanga, V, Sabolinski, M (1999) A bilayered living skin construct (APLIGRAF) accelerates complete closure of hard-to-heal venous ulcers. Wound Repair Regen. 7: pp. 201-207
    26. Fishman, JM, Lowdell, MW, Urbani, L, Ansari, T, Burns, AJ, Turmaine, M, North, J, Sibbons, P, Seifalian, AM, Wood, KJ, Birchall, MA, Coppi, P (2013) Immunomodulatory effect of a decellularized skeletal muscle scaffold in a discordant xenotransplantation model. Proc. Natl. Acad. Sci. USA 110: pp. 14360-14365
    27. Folkman, JH, Hochberg, M (1973) Self regulation of growth in three dimensions. J. Exp. Med. 138: pp. 745-753
    28. Foster, LJ, Karsten, E (2012) A chitosan based, laser activated thin film surgical adhesive, 鈥楽urgiLux鈥? preparation and demonstration. J. Vis. Exp JoVE 68: pp. xv-xvii
    29. Frisch, SM, Francis, H (1994) Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 124: pp. 619-626
    30. Gabella, G Structure of smooth muscles. In: Szekeres, L, Papp, JGY eds. (1994) Handbook of Experimental Pharmacology. Springer, Berlin, pp. 3-34
    31. Geerligs, M, Breemen, L, Peters, G, Ackermans, P, Baaijens, F, Oomens, C (2011) In vitro indentation to determine the mechanical properties of epidermis. J. Biomech. 44: pp. 1176-1181
    32. Geller, HM, Fawcett, JW (2002) Building a bridge: Engineering spinal cord repair. Exp. Neurol. 174: pp. 125-136
    33. Ghanaati, S, Webber, MJ, Unger, RE, Orth, C, Hulvat, JF, Kiehna, SE, Barbeck, M, Rasic, A, Stupp, SI, Kirkpatrick, CJ (2009) Dynamic in vivo biocompatibility of angiogenic peptide amphiphile nanofibers. Biomaterials 30: pp. 6202-6212
    34. Ghanaati, S, Fuchs, S, Webber, MJ, Orth, C, Barbeck, M, Gomes, ME, Reis, RL, Kirkpatrick, CJ (2011) Rapid vascularization of starch-poly(caprolactone) in vivo by outgrowth endothelial cells in co-culture with primary osteoblasts. J. Tissue Eng. Regen. Med. 5: pp. e136-e143
    35. Ghanaati, S, Unger, RE, Webber, MJ, Barbeck, M, Orth, C, Kirkpatrick, JA, Booms, P, Motta, A, Migliaresi, C, Sader, RA, Kirkpatrick, CJ (2011) Scaffold vascularization in vivo driven by primary human osteoblasts in concert with host inflammatory cells. Biomaterials 32: pp. 8150-8160
    36. Giano, MC, Pochan, DJ, Schneider, JP (2011) Controlled biodegradation of self-assembling beta-hairpin peptide hydrogels by proteolysis with matrix metalloproteinase-13. Biomaterials 32: pp. 6471-6477
    37. Green, H, Kehinde, O, Thomas, J (1979) Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc. Natl. Acad. Sci. USA 76: pp. 5665-5668
    38. Guo, Y, Yuan, T, Xiao, Z, Tang, P, Xiao, Y, Fan, Y, Zhang, X (2012) Hydrogels of collagen/chondroitin sulfate/hyaluronan interpenetrating polymer network for cartilage tissue engineering. J. Mater. Sci. Mater. Med. 23: pp. 2267-2279
    39. Guvendiren, M, Burdick, JA (2012) Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat. Commun. 3: pp. 792
    40. Heeschen, C, Lehmann, R, Honold, J, Assmus, B, Aicher, A, Walter, DH, Martin, H, Zeiher, AM, Dimmeler, S (2004) Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 109: pp. 1615-1622
    41. Herring, GM (1968) The chemical structure of tendon, cartilage, dentin and bone matrix. Clin. Orthop. Relat. Res. 60: pp. 261-299
    42. Hillel, AT, Unterman, S, Nahas, Z, Reid, B, Coburn, JM, Axelman, J, Chae, JJ, Guo, Q, Trow, R, Thomas, A, Hou, Z, Lichtsteiner, S, Sutton, D, Matheson, C, Walker, P, David, N, Mori, S, Taube, JM, Elisseeff, JH (2011) Photoactivated composite biomaterial for soft tissue restoration in rodents and in humans. Sci. Transl. Med. 3: pp. 93ra67
    43. Holmes, C., M. Tabrizian, and P. O. Bagnaninchi. Motility imaging via optical coherence phase microscopy enables label-free monitoring of tissue growth and viability in 3D tissue-engineering scaffolds. / J. Tissue Eng. Regen. Med. 2013. doi:10.1002/term.1687 .
    44. Holmes, C, Daoud, J, Bagnaninchi, PO, Tabrizian, M (2014) Polyelectrolyte multilayer coating of 3D scaffolds enhances tissue growth and gene delivery: non-invasive and label-free assessment. Adv. Healthc. Mater. 3: pp. 572-580
    45. Hutmacher, DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21: pp. 2529-2543
    46. Jaklenec, A, Stamp, A, Deweerd, E, Sherwin, A, Langer, R (2012) Progress in the tissue engineering and stem cell industry 鈥渁re we there yet?鈥? Tissue Eng. Part B Rev. 18: pp. 155-166
    47. Kadler, KE, Holmes, DF, Trotter, JA, Chapman, JA (1996) Collagen fibril formation. Biochem. J. 316: pp. 1-11
    48. Kanematsu, A, Yamamoto, S, Ozeki, M, Noguchi, T, Kanatani, I, Ogawa, O, Tabata, Y (2004) Collagenous matrices as release carriers of exogenous growth factors. Biomaterials 25: pp. 4513-4520
    49. Katta, J, Stapleton, T, Ingham, E, Jin, ZM, Fisher, J (2008) The effect of glycosaminoglycan depletion on the friction and deformation of articular cartilage. Proc. Inst. Mech. Eng. Part H 222: pp. 1-11
    50. Kazemi, M. and L. P. Li. A viscoelastic poromechanical model of the knee joint in large compression. / Med. Eng. Phys. 36:998鈥?006, 2014.
    51. Keane, TJ, Londono, R, Turner, NJ, Badylak, SF (2012) Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials 33: pp. 1771-1781
    52. Khan, OF, Sefton, MV (2011) Patterning collagen/poloxamine-methacrylate hydrogels for tissue-engineering-inspired microfluidic and laser lithography applications. J. Biomater. Sci. Polym. Ed. 22: pp. 2499-2514
    53. Khan, O. F., D. N. Voice, B. M. Leung, and M.V. Sefton. A novel high-speed production process to create modular components for the bottom-up assembly of large-scale tissue-engineered constructs. / Adv. Healthc. Mater. 2014. doi:10.1002/adhm.201400150 .
    54. Kim, KD, Wright, NM (2011) Polyethylene glycol hydrogel spinal sealant (duraseal spinal sealant) as an adjunct to sutured dural repair in the spine: results of a prospective, multicenter, randomized controlled study. Spine 36: pp. 1906-1912
    55. Kim, AM, Tingen, CM, Woodruff, TK (2010) Sex bias in trials and treatment must end. Nature 465: pp. 688-689
    56. Langer, R (2013) A personal account of translating discoveries in an academic lab. Nat. Biotechnol. 31: pp. 487-489
    57. Langer, R, Vacanti, JP (1993) Tissue engineering. Science. 260: pp. 920-926
    58. Lee, HS, Teng, SW, Chen, HC, Lo, W, Sun, Y, Lin, TY, Chiou, LL, Jiang, CC, Dong, CY (2006) Imaging human bone marrow stem cell morphogenesis in polyglycolic acid scaffold by multiphoton microscopy. Tissue Eng. 12: pp. 2835-2841
    59. Lee, MH, Arcidiacono, JA, Bilek, AM, Wille, JJ, Hamill, CA, Wonnacott, KM, Wells, MA, Oh, SS (2010) Considerations for tissue-engineered and regenerative medicine product development prior to clinical trials in the united states. Tissue Eng. Part. B Rev. 16: pp. 41-54
    60. Lee, JE, Park, S, Park, M, Kim, MH, Park, CG, Lee, SH, Choi, SY, Kim, BH, Park, HJ, Park, JH, Heo, CY, Choy, YB (2013) Surgical suture assembled with polymeric drug-delivery sheet for sustained, local pain relief. Acta Biomater. 9: pp. 8318-8327
    61. L鈥橦eureux, N, Dusserre, N, Konig, G, Victor, B, Keire, P, Wight, TN, Chronos, NA, Kyles, AE, Gregory, CR, Hoyt, G, Robbins, RC, McAllister, TN (2006) Human tissue-engineered blood vessels for adult arterial revascularization. Nat. Med. 12: pp. 361-365
    62. L鈥橦eureux, N, McAllister, TN, Fuente, LM (2007) Tissue-engineered blood vessel for adult arterial revascularization. New Engl. J. Med. 357: pp. 1451-1453
    63. Lieber, RL, Bodine-Fowler, SC (1993) Skeletal muscle mechanics: Implications for rehabilitation. Phys. Ther. 73: pp. 844-856
    64. Linke, WA, Hamdani, N (2014) Gigantic business: titin properties and function through thick and thin. Circ. Res. 114: pp. 1052-1068
    65. Liu, J., J. Hilderink, T. A. Groothuis, C. Otto, C. A. van Blitterswijk, and J. de Boer. Monitoring nutrient transport in tissue-engineered grafts. / J. Tissue Eng. Regen. Med. 2013.
    66. Lucero, HA, Kagan, HM (2006) Lysyl oxidase: an oxidative enzyme and effector of cell function. Cell. Mol. Life Sci. 63: pp. 2304-2316
    67. Macchiarini, P, Jungebluth, P, Go, T, Asnaghi, MA, Rees, LE, Cogan, TA, Dodson, A, Martorell, J, Bellini, S, Parnigotto, PP, Dickinson, SC, Hollander, AP, Mantero, S, Conconi, MT, Birchall, MA (2008) Clinical transplantation of a tissue-engineered airway. Lancet 372: pp. 2023-2030
    68. Macdonald, ML, Samuel, RE, Shah, NJ, Padera, RF, Beben, YM, Hammond, PT (2011) Tissue integration of growth factor-eluting layer-by-layer polyelectrolyte multilayer coated implants. Biomaterials 32: pp. 1446-1453
    69. MacNeil, S (2007) Progress and opportunities for tissue-engineered skin. Nature 445: pp. 874-880
    70. Mangera, A, Bullock, AJ, Roman, S, Chapple, CR, MacNeil, S (2013) Comparison of candidate scaffolds for tissue engineering for stress urinary incontinence and pelvic organ prolapse repair. BJU Int. 112: pp. 674-685
    71. Marston, WA, Hanft, J, Norwood, P, Pollak, R (2003) The efficacy and safety of dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care. 26: pp. 1701-1705
    72. Mathur, AB, Collinsworth, AM, Reichert, WM, Kraus, WE, Truskey, GA (2001) Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J. Biomech. 34: pp. 1545-1553
    73. Mestas, J, Hughes, CC (2004) Of mice and not men: differences between mouse and human immunology. J. Immunol. 172: pp. 2731-2738
    74. Miller, JS, Stevens, KR, Yang, MT, Baker, BM, Nguyen, DHT, Cohen, DM, Toro, E, Chen, AA, Galie, PA, Yu, X, Chaturvedi, R, Bhatia, SN, Chen, CS (2012) Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11: pp. 768-774
    75. Morelli, AE, Thomson, AW (2007) Tolerogenic dendritic cells and the quest for transplant tolerance. Nat. Rev. Immunol. 7: pp. 610-621
    76. Nillesen, ST, Geutjes, PJ, Wismans, R, Schalkwijk, J, Daamen, WF, Kuppevelt, TH (2007) Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF-2 and VEGF. Biomaterials 28: pp. 1123-1131
    77. Nishida, K (2003) Tissue engineering of the cornea. Cornea 22: pp. S28-S34
    78. Odian, GG (2004) Principles of Polymerization. Wiley-Interscience, Hoboken, NJ
    79. Ommaya, AK (1968) Mechanical properties of tissues of the nervous system. J. Biomech. 1: pp. 127-138
    80. Ott, HC, Matthiesen, TS, Goh, SK, Black, LD, Kren, SM, Netoff, TI, Taylor, DA (2008) Perfusion-decellularized matrix: using nature鈥檚 platform to engineer a bioartificial heart. Nat. Med. 14: pp. 213-221
    81. Ott, HC, Clippinger, B, Conrad, C, Schuetz, C, Pomerantseva, I, Ikonomou, L, Kotton, D, Vacanti, JP (2010) Regeneration and orthotopic transplantation of a bioartificial lung. Nat. Med. 16: pp. 927-933
    82. Oxlund, H, Manschot, J, Viidik, A (1988) The role of elastin in the mechanical properties of skin. J. Biomech. 21: pp. 213-218
    83. Park, KM, Woo, HM (2012) Systemic decellularization for multi-organ scaffolds in rats. Transpl. Proc. 44: pp. 1151-1154
    84. Paul, SM, Mytelka, DS, Dunwiddie, CT, Persinger, CC, Munos, BH, Lindborg, SR, Schacht, AL (2010) How to improve r&d productivity: The pharmaceutical industry鈥檚 grand challenge. Nat. Rev. Drug Discov. 9: pp. 203-214
    85. Petersen, OW, Ronnov-Jessen, L, Howlett, AR, Bissell, MJ (1992) Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc. Natl. Acad. Sci. USA 89: pp. 9064-9068
    86. Place, ES, George, JH, Williams, CK, Stevens, MM (2009) Synthetic polymer scaffolds for tissue engineering. Chem. Soc. Rev. 38: pp. 1139-1151
    87. Price, A. P., L. M. Godin, A. Domek, T. Cotter, J. D鈥機unha, D. A. Taylor, and A. Panoskaltsis-Mortari. Automated decellularization of intact, human-sized lungs for tissue engineering. / Tissue Eng. Part C. 2014.
    88. Restifo, NP, Marincola, FM, Kawakami, Y, Taubenberger, J, Yannelli, JR, Rosenberg, SA (1996) Loss of functional beta2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J. Natl. Cancer Inst. 88: pp. 100-108
    89. Rho, J-Y, Kuhn-Spearing, L, Zioupos, P (1998) Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20: pp. 92-102
    90. Saher, G, Brugger, B, Lappe-Siefke, C, Mobius, W, Tozawa, R, Wehr, MC, Wieland, F, Ishibashi, S, Nave, KA (2005) High cholesterol level is essential for myelin membrane growth. Nat. Neurosci. 8: pp. 468-475
    91. Salinas, CN, Anseth, KS (2008) The enhancement of chondrogenic differentiation of human mesenchymal stem cells by enzymatically regulated RGD functionalities. Biomaterials 29: pp. 2370-2377
    92. Salvatori, M, Katari, R, Patel, T, Peloso, A, Mugweru, J, Owusu, K, Orlando, G (2014) Extracellular matrix scaffold technology for bioartificial pancreas engineering: State of the art and future challenges. J. Diabetes Sci. Technol. 8: pp. 159-169
    93. Seok, J, Warren, HS, Cuenca, AG, Mindrinos, MN, Baker, HV, Xu, W, Richards, DR, McDonald-Smith, GP, Gao, H, Hennessy, L, Finnerty, CC, Lopez, CM, Honari, S, Moore, EE, Minei, JP, Cuschieri, J, Bankey, PE, Johnson, JL, Sperry, J, Nathens, AB, Billiar, TR, West, MA, Jeschke, MG, Klein, MB, Gamelli, RL, Gibran, NS, Brownstein, BH, Miller-Graziano, C, Calvano, SE, Mason, PH, Cobb, JP, Rahme, LG, Lowry, SF, Maier, RV, Moldawer, LL, Herndon, DN, Davis, RW, Xiao, W, Tompkins, RG (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl. Acad. Sci. USA 110: pp. 3507-3512
    94. Shah, NJ, Macdonald, ML, Beben, YM, Padera, RF, Samuel, RE, Hammond, PT (2011) Tunable dual growth factor delivery from polyelectrolyte multilayer films. Biomaterials 32: pp. 6183-6193
    95. Shah, NJ, Hyder, MN, Moskowitz, JS, Quadir, MA, Morton, SW, Seeherman, HJ, Padera, RF, Spector, M, Hammond, PT (2013) Surface-mediated bone tissue morphogenesis from tunable nanolayered implant coatings. Sci. Transl. Med. 5: pp. 191ra183
    96. Sharma, B, Fermanian, S, Gibson, M, Unterman, S, Herzka, DA, Cascio, B, Coburn, J, Hui, AY, Marcus, N, Gold, GE, Elisseeff, JH (2013) Human cartilage repair with a photoreactive adhesive-hydrogel composite. Sci. Transl. Med. 5: pp. 167ra166
    97. Shen, YH, Shoichet, MS, Radisic, M (2008) Vascular endothelial growth factor immobilized in collagen scaffold promotes penetration and proliferation of endothelial cells. Acta Biomater. 4: pp. 477-489
    98. Shultz, LD, Ishikawa, F, Greiner, DL (2007) Humanized mice in translational biomedical research. Nat. Rev. Immunol. 7: pp. 118-130
    99. Singh, A, Lu, Y, Chen, C, Cavanaugh, JM (2006) Mechanical properties of spinal nerve roots subjected to tension at different strain rates. J. Biomech. 39: pp. 1669-1676
    100. Song, JJ, Guyette, JP, Gilpin, SE, Gonzalez, G, Vacanti, JP, Ott, HC (2013) Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat. Med. 19: pp. 646-651
    101. Starzl, TE, Murase, N, Abu-Elmagd, K, Gray, EA, Shapiro, R, Eghtesad, B, Corry, RJ, Jordan, ML, Fontes, P, Gayowski, T, Bond, G, Scantlebury, VP, Potdar, S, Randhawa, P, Wu, T, Zeevi, A, Nalesnik, MA, Woodward, J, Marcos, A, Trucco, M, Demetris, AJ, Fung, JJ (2003) Tolerogenic immunosuppression for organ transplantation. Lancet 361: pp. 1502-1510
    102. Sussman, E. M., M. C. Halpin, J. Muster, R. T. Moon, and B. D. Ratner. Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction. / Ann. Biomed. Eng. 1鈥?, 2013.
    103. Thomas, PK (1963) The connective tissue of peripheral nerve: an electron microscope study. J. Anat. 97: pp. 35-44
    104. Tzanakakis, ES, Hess, DJ, Sielaff, TD, Hu, WS (2000) Extracorporeal tissue engineered liver-assist devices. Annu. Rev. Biomed. Eng. 2: pp. 607-632
    105. Unger, RE, Peters, K, Huang, Q, Funk, A, Paul, D, Kirkpatrick, CJ (2005) Vascularization and gene regulation of human endothelial cells growing on porous polyethersulfone (PES) hollow fiber membranes. Biomaterials 26: pp. 3461-3469
    106. Utzschneider, S, Paulus, AC, Schroder, C, Jansson, V (2014) Possibilities and limits of modern polyethylenes: with respect to the application profile. Der Orthopade 43: pp. 515-521
    107. Uygun, BE, Soto-Gutierrez, A, Yagi, H, Izamis, ML, Guzzardi, MA, Shulman, C, Milwid, J, Kobayashi, N, Tilles, A, Berthiaume, F, Hertl, M, Nahmias, Y, Yarmush, ML, Uygun, K (2010) Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat. Med. 16: pp. 814-820
    108. Wang, JH (2006) Mechanobiology of tendon. J. Biomech. 39: pp. 1563-1582
    109. Wang, TY, Bruggeman, KA, Sheean, RK, Turner, BJ, Nisbet, DR, Parish, CL (2014) Characterisation of the stability and bio-functionality of tethered proteins on bioengineered scaffolds: implications for stem cell biology and tissue repair. J. Biol. Chem. 289: pp. 15044-15051
    110. Webber, MJ, Tongers, J, Newcomb, CJ, Marquardt, KT, Bauersachs, J, Losordo, DW, Stupp, SI (2011) Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair. Proc. Natl. Acad. Sci. USA 108: pp. 13438-13443
    111. Witkowski, P, Sondermeijer, H, Hardy, MA, Woodland, DC, Lee, K, Bhagat, G, Witkowski, K, See, F, Rana, A, Maffei, A, Itescu, S, Harris, PE (2009) Islet grafting and imaging in a bioengineered intramuscular space. Transplantation 88: pp. 1065-1074
    112. Wu, W, Feng, X, Mao, T, Ouyang, HW, Zhao, G, Chen, F (2007) Engineering of human tracheal tissue with collagen-enforced poly-lactic-glycolic acid non-woven mesh: a preliminary study in nude mice. Br. J. Oral. Maxillofac. Surg. 45: pp. 272-278
    113. Yannas, IV, Burke, JF, Orgill, DP, Skrabut, EM (1982) Wound tissue can utilize a polymeric template to synthesize a functional extension of skin. Science 215: pp. 174-176
    114. Yeong, WY, Chua, CK, Leong, KF, Chandrasekaran, M (2004) Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol. 22: pp. 643-652
    115. Zhang, L, Cao, Z, Bai, T, Carr, L, Ella-Menye, JR, Irvin, C, Ratner, BD, Jiang, S (2013) Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 31: pp. 553-556
    116. Zhao, L, Lee, VK, Yoo, SS, Dai, G, Intes, X (2012) The integration of 3-d cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds. Biomaterials 33: pp. 5325-5332
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Biomedicine
    Biomedical Engineering
    Biophysics and Biomedical Physics
    Mechanics
    Biochemistry
  • 出版者:Springer Netherlands
  • ISSN:1573-9686
文摘
Scaffolds have been broadly applied within tissue engineering and regenerative medicine to regenerate, replace, or augment diseased or damaged tissue. For a scaffold to perform optimally, several design considerations must be addressed, with an eye toward the eventual form, function, and tissue site. The chemical and mechanical properties of the scaffold must be tuned to optimize the interaction with cells and surrounding tissues. For complex tissue engineering, mass transport limitations, vascularization, and host tissue integration are important considerations. As the tissue architecture to be replaced becomes more complex and hierarchical, scaffold design must also match this complexity to recapitulate a functioning tissue. We outline these design constraints and highlight creative and emerging strategies to overcome limitations and modulate scaffold properties for optimal regeneration. We also highlight some of the most advanced strategies that have seen clinical application and discuss the hurdles that must be overcome for clinical use and commercialization of tissue engineering technologies. Finally, we provide a perspective on the future of scaffolds as a functional contributor to advancing tissue engineering and regenerative medicine.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700